Log in

Stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The key to solve increasingly severe electromagnetic (EM) pollution is to explore sustainable, easily prepared, and cost-effective EM wave absorption materials with exceptional absorption capability. Herein, instead of anchoring on carbon materials in single layer, MoS2 flower-like microspheres were stacked on the surface of pomelo peels-derived porous carbon nanosheets (C) to fabricate MoS2@C nanocomposites by a facile solvothermal process. EM wave absorption performances of MoS2@C nanocomposites in X-band were systematically investigated, indicating the minimum reflection loss (RLmin) of −62.3 dB (thickness of 2.88 mm) and effective absorption bandwidth (EAB) almost covering the whole X-band (thickness of 2.63 mm) with the filler loading of only 20 wt.%. Superior EM wave absorption performances of MoS2@C nanocomposites could be attributed to the excellent impedance matching characteristic and dielectric loss capacity (conduction loss and polarization loss). This study revealed that the as-prepared MoS2@C nanocomposites would be a novel prospective candidate for the sustainable EM absorbents with superior EM wave absorption performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shu, R. W.; Yang, X. H.; Zhao, Z. W. Fabrication of core-shell structure NiFe2O4@SiO2 decorated nitrogen-doped graphene composite aerogels towards excellent electromagnetic absorption in the Ku band. Carbon 2023, 210, 118047.

    Article  CAS  Google Scholar 

  2. Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, 2211642.

    Article  CAS  Google Scholar 

  3. Lou, Z. C.; Wang, Q. Y.; Zhou, X. D.; Kara, U. I.; Mamtani, R. S.; Lv, H. L.; Zhang, M.; Yang, Z. H.; Li, Y. J.; Wang, C. X. et al. An angle-insensitive electromagnetic absorber enabling a wideband absorption. J. Mater. Sci. Technol. 2022, 113, 33–39.

    Article  CAS  Google Scholar 

  4. Shu, R. W.; Zhao, Z. W.; Yang, X. H. Synthesis of hollow CuFe2O4 microspheres decorated nitrogen-doped graphene hybrid composites for broadband and efficient electromagnetic absorption. J. Colloid Interface Sci. 2023, 648, 66–77.

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Liang, C. B.; Qiu, H.; Zhang, Y. L.; Liu, Y. Q.; Gu, J. W. External field-assisted techniques for polymer matrix composites with electromagnetic interference shielding. Sci. Bull., in press, https://doi.org/10.1016/j.scib.2023.07.046.

  6. Guo, Y. Q.; Ruan, K. P.; Wang, G. S.; Gu, J. W. Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 2023, 68, 1195–1212.

    Article  CAS  Google Scholar 

  7. Wen, B.; Wang, X. X.; Cao, W. Q.; Shi, H. L.; Lu, M. M.; Wang, G.; **, H. B.; Wang, W. Z.; Yuan, J.; Cao, M. S. Reduced graphene oxides: The thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world. Nanoscale 2014, 6, 5754–5761.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Cui, X. Q.; Liang, X. H.; Liu, W.; Gu, W. H.; Ji, G. B.; Du, Y. W. Stable microwave absorber derived from 1D customized heterogeneous structures of Fe3N@C. Chem. Eng. J. 2020, 381, 122589.

    Article  CAS  Google Scholar 

  9. Han, Y. X.; He, M. K.; Hu, J. W.; Liu, P. B.; Liu, Z. W.; Ma, Z. L.; Ju, W. B.; Gu, J. W. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 2023, 16, 1773–1778.

    Article  ADS  CAS  Google Scholar 

  10. Shu, R. W.; Wu, J. J.; Yang, X. H. Fabrication of Co/C composites derived from Co-based metal organic frameworks with broadband and efficient electromagnetic absorption. Compos. Part A: Appl. Sci. Manuf. 2023, 173, 107677.

    Article  CAS  Google Scholar 

  11. Cheng, Y.; Zhao, H. Q.; Zhao, Y.; Cao, J. M.; Zheng, J.; Ji, G. B. Structure-switchable mesoporous carbon hollow sphere framework toward sensitive microwave response. Carbon 2020, 161, 870–879.

    Article  CAS  Google Scholar 

  12. E, T.; Ma, Z. Y.; Cai, D.; Yang, S. Y.; Li, Y. Enhancement of interfacial charge transfer of TiO2/graphene with doped Ca2+ for improving electrical conductivity. ACS Appl. Mater. Interfaces 2021, 13, 41875–41885.

    Article  PubMed  Google Scholar 

  13. Wu, Y.; Chen, L.; Han, Y. X.; Liu, P. B.; Xu, H. H.; Yu, G. Z.; Wang, Y. Y.; Wen, T.; Ju, W. B.; Gu, J. W. Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption. Nano Res. 2023, 16, 7801–7809.

    Article  ADS  CAS  Google Scholar 

  14. Liu, X. D.; Huang, Y.; Zhao, X. X.; Han, X. P.; Jia, Y. W.; Zong, M. Core-shell W-doped carbon nanofibers@poly(3,4-ethylenedioxythiophene): Flexible composite fibers for enhanced electromagnetic wave absorption. Compos. Part A: Appl. Sci. Manuf. 2022, 163, 107227.

    Article  CAS  Google Scholar 

  15. Li, W. X.; Li, B. Q.; Zhao, Y. L.; Wei, X. Q.; Guo, F. Facile synthesis of Fe3O4 nanoparticles/reduced graphene oxide sandwich composites for highly efficient microwave absorption. J. Colloid. Interface. Sci. 2023, 645, 76–85.

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Ren, Q. Q.; Yao, L. W.; Sun, Y. S.; Zhu, H. Y.; Wang, Y. N.; Zhang, H.; Yun, J. N.; Yan, J. F.; Zhang, Z. Y.; Zhao, W. Enhanced electromagnetic wave absorption properties of ultrathin SnO nanosheets/carbon nanotube hybrids. J. Alloys Compd. 2023, 960, 170694.

    Article  CAS  Google Scholar 

  17. Zhao, H. Q.; Cheng, Y.; Zhang, Z.; Zhang, B. S.; Pei, C. C.; Fan, F. Y.; Ji, G. B. Biomass-derived graphene-like porous carbon nanosheets towards ultralight microwave absorption and excellent thermal infrared properties. Carbon 2021, 173, 501–511.

    Article  CAS  Google Scholar 

  18. Zhao, H. Q.; Cheng, Y.; Lv, H. L.; Ji, G. B.; Du, Y. W. A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon 2019, 142, 245–253.

    Article  CAS  Google Scholar 

  19. Mou, P. P.; Zhao, J. C.; Wang, G. Z.; Shi, S. H.; Wan, G. P.; Zhou, M. F.; Deng, Z.; Teng, S. J.; Wang, G. L. BCN nanosheets derived from coconut shells with outstanding microwave absorption and thermal conductive properties. Chem. Eng. J. 2022, 437, 135285.

    Article  CAS  Google Scholar 

  20. Chang, Q. L.; Li, C. P.; Sui, J.; Waterhouse, G. I. N.; Zhang, Z. M.; Yu, L. M. Cage-like eggshell membrane-derived Co-CoxSy-Ni/N, S-codoped carbon composites for electromagnetic wave absorption. Chem. Eng. J. 2022, 430, 132650.

    Article  CAS  Google Scholar 

  21. Luo, J. H.; Dai, Z. Y.; Feng, M. N.; Chen, X. W.; Sun, C. H.; Xu, Y. Hierarchically porous carbon derived from natural porphyra for excellent electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 129, 206–214.

    Article  CAS  Google Scholar 

  22. Zhang, D. Q.; Zhang, H. B.; Cheng, J. Y.; Raza, H.; Liu, T. T.; Liu, B.; Ba, X. W.; Zheng, G. P.; Chen, G. H.; Cao, M. S. Customizing coaxial stacking VS2 nanosheets for dual-band microwave absorption with superior performance in the C- and Ku-bands. J. Mater. Chem. C 2020, 8, 5923–5933.

    Article  CAS  Google Scholar 

  23. Huang, Z. H.; Cheng, J. Y.; Zhang, H. B.; **ong, Y. F.; Zhou, Z. X.; Zheng, Q. B.; Zheng, G. P.; Zhang, D. Q.; Cao, M. S. Highperformance microwave absorption enabled by Co3O4 modified VB-group laminated VS2 with frequency modulation from S-band to Ku-band. J. Mater. Sci. Technol. 2022, 107, 155–164.

    Article  CAS  Google Scholar 

  24. Zhang, D. Q.; Liu, T. T.; Cheng, J. Y.; Cao, Q.; Zheng, G. P.; Liang, S.; Wang, H.; Cao, M. S. Lightweight and high-performance microwave absorber based on 2D WS2-RGO heterostructures. Nano-Micro Lett. 2019, 11, 38.

    Article  ADS  CAS  Google Scholar 

  25. Zhang, H. B.; Cheng, J. Y.; Wang, H. H.; Huang, Z. H.; Zheng, Q. B.; Zheng, G. P.; Zhang, D. Q.; Che, R. C.; Cao, M. S. Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation. Adv. Funct. Mater. 2022, 32, 2108194.

    Article  CAS  Google Scholar 

  26. Fang, X. R.; Wei, P.; Wang, L.; Wang, X. S.; Chen, B.; He, Q. Y.; Yue, Q. Y.; Zhang, J. D.; Zhao, W. et al. Transforming monolayer transition-metal dichalcogenide nanosheets into one-dimensional nanoscrolls with high photosensitivity. ACS Appl. Mater. Interfaces 2018, 10, 13011–13018.

    Article  CAS  PubMed  Google Scholar 

  27. Adhikari, S.; Mandal, S.; Kim, D. H. Z-scheme 2D/1D MoS2 nanosheet-decorated Ag2Mo2O7 microrods for efficient catalytic oxidation of levofloxacin. Chem. Eng. J. 2019, 373, 31–43.

    Article  CAS  Google Scholar 

  28. Choi, W.; Choudhary, N.; Han, G. H.; Park, J.; Akinwande, D.; Lee, Y. H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 2017, 20, 116–130.

    Article  CAS  Google Scholar 

  29. Sun, C. L.; Zhao, K. N.; He, Y.; Zheng, J. M.; Xu, W. W.; Zhang, C. Y.; Wang, X. Guo, M.H.; Mai, L. Q.; Wang, C. M. et al. Interconnected vertically stacked 2D-MoS2 for ultrastable cycling of rechargeable Li-Ion battery. ACS Appl. Mater. Interfaces 2019, 11, 20762–20769.

    Article  CAS  PubMed  Google Scholar 

  30. Guo, H. Q.; Wang, L.; You, W. B.; Yang, L. T.; Li, X.; Chen, G. Y.; Wu, Z. C.; Qian, X.; Wang, M.; Che, R. C. Engineering phase transformation of MoS2/RGO by N-do** as an excellent microwave absorber. ACS Appl. Mater. Interfaces 2020, 12, 16831–16840.

    Article  CAS  PubMed  Google Scholar 

  31. Ning, M. Q.; Man, Q. K.; Tan, G. G.; Lei, Z. K.; Li, J. B.; Li, R. W. Ultrathin MoS2 nanosheets encapsulated in hollow carbon spheres: A case of a dielectric absorber with optimized impedance for efficient microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 20785–20796.

    Article  CAS  PubMed  Google Scholar 

  32. Yang, K.; Cui, Y. H.; Liu, Z. H.; Liu, P.; Zhang, Q. Y.; Zhang, B. L. Design of core-shell structure NC@MoS2 hierarchical nanotubes as high-performance electromagnetic wave absorber. Chem. Eng. J. 2021, 426, 131308.

    Article  CAS  Google Scholar 

  33. Liu, J. K.; Jia, Z. R.; Zhou, W. H.; Liu, X. H.; Zhang, C. H.; Xu, B. H.; Wu, G. L. Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption. Chem. Eng. J. 2022, 429, 132253.

    Article  CAS  Google Scholar 

  34. Ma, Z. L.; **ang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.

    Article  CAS  Google Scholar 

  35. Song, P.; Ma, Z. L.; Qiu, H.; Ru, Y. F.; Gu, J. W. High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 2022, 14, 51.

    Article  ADS  CAS  Google Scholar 

  36. Zhao, J.; Wei, Y.; Zhang, Y.; Zhang, Q. G. 3D flower-like hollow CuS@PANI microspheres with superb X-band electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 126, 141–151.

    Article  CAS  Google Scholar 

  37. Zhao, J.; Li, M.; Gao, X. G. Construction of SnO2 nanoparticle cluster@PANI core-shell microspheres for efficient X-band electromagnetic wave absorption. J. Alloys Compd. 2022, 915, 165439.

    Article  CAS  Google Scholar 

  38. Liu, P. B.; Gao, S.; Wang, Y.; Zhou, F. T.; Huang, Y.; Huang, W. H.; Chang, N. H. Core-shell Ni@C encapsulated by N-doped carbon derived from nickel-organic polymer coordination composites with enhanced microwave absorption. Carbon 2020, 170, 503–516.

    Article  CAS  Google Scholar 

  39. Lian, Y. L.; Han, B. H.; Liu, D. W.; Wang, Y. H.; Zhao, H. H.; Xu, P.; Han, X. J.; Du, Y. C. Solvent-free synthesis of ultrafine tungsten carbide nanoparticles-decorated carbon nanosheets for microwave absorption. Nano-Micro Lett. 2020, 12, 153.

    Article  ADS  CAS  Google Scholar 

  40. Wang, X. Y.; Zhu, T.; Chang, S. C.; Lu, Y. K.; Mi, W. B.; Wang, W. 3D nest-like architecture of core-shell CoFe2O4@1T/2H-MoS2 composites with tunable microwave absorption performance. ACS Appl. Mater. Interfaces 2020, 12, 11252–11264.

    Article  CAS  PubMed  Google Scholar 

  41. Cheng, J.; Cai, L.; Shi, Y. Y.; Pan, F.; Dong, Y. Y.; Zhu, X. J.; Jiang, H. J.; Zhang, X.; **ang, Z.; Lu, W. Polarization loss-enhanced honeycomb-like MoS2 nanoflowers/undaria pinnatifida-derived porous carbon composites with high-efficient electromagnetic wave absorption. Chem. Eng. J. 2022, 431, 134284.

    Article  CAS  Google Scholar 

  42. Luo, J. H.; Feng, M. N.; Dai, Z. Y.; Jiang, C. Y.; Yao, W.; Zhai, N. X. MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption. Nano Res. 2022, 15, 5781–5789.

    Article  ADS  CAS  Google Scholar 

  43. Zhang, W. D.; Zhang, X.; Zheng, Y.; Guo, C.; Yang, M. Y.; Li, Z.; Wu, H. J.; Qiu, H.; Yan, H. X.; Qi, S. H. Preparation of polyaniline@MoS2@Fe3O4 nanowires with a wide band and small thickness toward enhancement in microwave absorption. ACS Appl. Nano Mater. 2018, 1, 5865–5875.

    Article  CAS  Google Scholar 

  44. Cheng, J. B.; Zhao, H. B.; Cao, M.; Li, M. E.; Zhang, A. N.; Li, S. L.; Wang, Y. Z. Banana leaflike C-doped MoS2 aerogels toward excellent microwave absorption performance. ACS Appl. Mater. Interfaces 2020, 12, 26301–26312.

    Article  CAS  PubMed  Google Scholar 

  45. **ng, L. S.; Li, X.; Wu, Z. C.; Yu, X. F.; Liu, J. W.; Wang, L.; Cai, C. Y.; You, W. B.; Chen, G. Y.; Ding, J. J. et al. 3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption. Chem. Eng. J. 2020, 379, 122241.

    Article  CAS  Google Scholar 

  46. Zhang, W. L.; Zhao, J. M.; Cai, C. C.; Qin, Y.; Meng, X. J.; Liu, Y. H.; Nie, S. X. Gas-sensitive cellulosic triboelectric materials for self-powered ammonia sensing. Adv. Sci. (Weinh.) 2022, 9, 2203428.

    CAS  PubMed  Google Scholar 

  47. Wei, C. H.; He, M. K.; Li, M. Q.; Ma, X.; Dang, W. L.; Liu, P. B.; Gu, J. W. Hollow Co/NC@MnO2 polyhedrons with enhanced synergistic effect for high-efficiency microwave absorption. Mater. Today Phys. 2023, 36, 101142.

    Article  CAS  Google Scholar 

  48. Cui, E. B.; Pan, F.; **ang, Z.; Liu, Z. C.; Yu, L. Z.; **ong, J.; Li, X.; Lu, W. Engineering dielectric loss of FeCo/polyvinylpyrrolidone core-shell nanochains@graphene oxide composites with excellent microwave absorbing properties. Adv. Eng. Mater. 2021, 23, 2000827.

    Article  CAS  Google Scholar 

  49. Yan, X.; Huang, X. X.; Zhong, B.; Wu, T.; Wang, H. T.; Zhang, T.; Bai, N.; Zhou, G. P.; Pan, H.; Wen, G. W. et al. Balancing interface polarization strategy for enhancing electromagnetic wave absorption of carbon materials. Chem. Eng. J. 2020, 391, 123538.

    Article  CAS  Google Scholar 

  50. Li, X.; Huang, C.; Wang, Z. L.; **ang, Z.; Lu, W. Enhanced electromagnetic wave absorption of layered FeCo@carbon nanocomposites with a low filler loading. J. Alloys Compd. 2021, 879, 160465.

    Article  CAS  Google Scholar 

  51. **ang, Z.; Deng, B. W.; Huang, C.; Liu, Z. C.; Song, Y. M.; Lu, W. Rational design of hollow nanosphere y-Fe2O3/MWCNTs composites with enhanced electromagnetic wave absorption. J. Alloys Compd. 2020, 822, 153570.

    Article  CAS  Google Scholar 

  52. Liu, W.; Tan, S. J.; Yang, Z. H.; Ji, G. B. Enhanced low-frequency electromagnetic properties of MOF-derived cobalt through interface design. ACS Appl. Mater. Interfaces 2018, 10, 31610–31622.

    Article  CAS  PubMed  Google Scholar 

  53. Kong, L.; Yin, X. W.; Zhang, Y. J.; Yuan, X. Y.; Li, Q.; Ye, F.; Cheng, L. F.; Zhang, L. T. Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters. J. Phys. Chem. C 2013, 117, 19701–19711.

    Article  CAS  Google Scholar 

  54. Kong, L.; Yin, X. W.; Yuan, X. Y.; Zhang, Y. J.; Liu, X. M.; Cheng, L. F.; Zhang, L. T. Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane) composites. Carbon 2014, 73, 185–193.

    Article  CAS  Google Scholar 

  55. Zhao, J.; Lu, Y. J.; Ye, W. L.; Wang, L.; Liu, B.; Lv, S. S.; Chen, L. X.; Gu, J. W. Enhanced wave-absorbing performances of silicone rubber composites by incorporating C-SnO2-MWCNT absorbent with ternary heterostructure. Ceram. Int. 2019, 45, 20282–20289.

    Article  CAS  Google Scholar 

  56. Han, M. K.; Yin, X. W.; Kong, L.; Li, M.; Duan, W. Y.; Zhang, L. T.; Cheng, L. F. Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J. Mater. Chem. A 2014, 2, 16403–16409.

    Article  CAS  Google Scholar 

  57. Liu, Y.; Jian, X. Y.; Su, X. L.; Luo, F.; Xu, J.; Wang, J. B.; He, X. H.; Qu, Y. H. Electromagnetic interference shielding and absorption properties of Ti3SiC2/nano Cu/epoxy resin coating. J. Alloys Compd. 2018, 740, 68–76.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the PhD Start-up Fund of Science and Technology Department of Liaoning Province (No. 2022-BS-306), the General Cultivation Scientific Research Project of Bohai University (No. 0522xn058), and the PhD Research Startup Foundation of Bohai University (No. 0521bs021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia Zhao or Qingguo Zhang.

Electronic Supplementary Material

12274_2023_6090_MOESM1_ESM.pdf

Stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Gu, Z. & Zhang, Q. Stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption. Nano Res. 17, 1607–1615 (2024). https://doi.org/10.1007/s12274-023-6090-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6090-3

Keywords

Navigation