Log in

Size effect enabling additive-free MXene ink with ultrahigh conductivity for screen printing of wireless electronics

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Facile preparation of additive-free inks with both high viscosity and high conductivity is critical for scalable screen printing of wireless electronics, yet very challenging. MXene materials exhibit excellent conductivity and hydrophilicity, showing great potential in the field of additive-free inks for screen printing. Here, we demonstrate the synthesis of additive-free two-dimensional (2D) titanium carbide MXene inks, and realize screen-printed MXene wireless electronics for the first time. The viscosity of MXene ink is solely regulated by tuning the size of MXene nanosheet without any additives, hence rendering the printed MXene film extremely high conductivity of 1.67 × 105 S/m and fine printing resolution down to 0.05 mm on various flexible substrates. Moreover, radio frequency identification (RFID) tags fabricated using the additive-free MXene ink via screen printing exhibit stable antenna reading performance and superb flexibility. This article, thus offers a new route for the efficient, low-cost and pollution-free manufacture of printable electronics based on additive-free MXene inks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liang, C.; Qiu, K. F.; Zhang, Z.; Yang, J.; Li, Y. Z.; Hu, J. J. Towards robust and stealthy communication for wireless intelligent terminals. Int. J. Intell. Syst. 2022, 37, 11791–11814.

    Google Scholar 

  2. Oteafy, S. M. A.; Hassanein, H. S. IoT in the fog: A roadmap for data-centric IoT development. IEEE Commun. Mag. 2018, 56, 157–163.

    Google Scholar 

  3. Xu, L. Q.; Tang, Y. Z.; Zhang, C.; Liu, F. H.; Chen, J. K.; Xuan, W. P.; **, H.; Ye, Z.; Cao, Z.; Li, Y. B. et al. Fully self-powered instantaneous wireless liquid level sensor system based on triboelectric nanogenerator. Nano Res. 2022, 75, 5425–5434.

    Google Scholar 

  4. Wang, W. T.; Lu, L. S.; Lu, X. Y.; Liang, Z. B.; Lin, H. H.; Li, Z. H.; Wu, X. H.; Lin, L. H.; **e, Y. X. Scorpion-inspired dual-bionic, microcrack-assisted wrinkle based laser induced graphene-silver strain sensor with high sensitivity and broad working range for wireless health monitoring system. Nano Res. 2023, 75, 1228–1241.

    Google Scholar 

  5. Khan, Y.; Thielens, A.; Muin, S.; Ting, J.; Baumbauer, C.; Arias, A. C. A new frontier of printed electronics: Flexible hybrid electronics. Adv. Mater. 2020, 32, 1905279.

    CAS  Google Scholar 

  6. Li, D. D.; Lai, W. Y.; Zhang, Y. Z.; Huang, W. Printable transparent conductive films for flexible electronics. Adv. Mater. 2018, 30, 1704738.

    Google Scholar 

  7. Shao, Y. Z.; Wei, L. S.; Wu, X. Y.; Jiang, C. M.; Yao, Y.; Peng, B.; Chen, H.; Huangfu, J. T.; Ying, Y. B.; Zhang, C. J. et al. Room-temperature high-precision printing of flexible wireless electronics based on MXene inks. Nat. Commun. 2022, 73, 3223.

    Google Scholar 

  8. Zhu, H. W.; Gao, H. L.; Zhao, H. Y.; Ge, J.; Hu, B. C.; Huang, J.; Yu, S. H. Printable elastic silver nanowire-based conductor for washable electronic textiles. Nano Res. 2020, 70, 2879–2884.

    Google Scholar 

  9. Zhang, Y. F.; Wang, C.; Dong, X. Y.; Jiang, H. M.; Hu, T.; Meng, C. G.; Huang, C. Alkali etching metal silicates derived from bamboo leaves with enhanced electrochemical properties for solid-state hybrid supercapacitors. Chem. Eng. J. 2020, 417, 127964.

    Google Scholar 

  10. Lin, Y.; Li, Q. S.; Ding, C., Wang, J. Y.; Yuan, W.; Liu, Z. Y.; Su, W. M.; Cui, Z. High-resolution and large-size stretchable electrodes based on patterned silver nanowires composites. Nano Res. 2022, 75, 4590–4598.

    Google Scholar 

  11. Wang, G. D.; Adil, M. A.; Zhang, J. Q.; Wei, Z. X. Large-area organic solar cells: Material requirements, modular designs, and printing methods. Adv. Mater. 2009, 37, 1805089.

    Google Scholar 

  12. Ma, R. H.; Wang, C. F.; Yan, W.; Sun, M. Z.; Zhao, J. X.; Zheng, Y. T.; Li, X.; Huang, L. B.; Chen, B.; Wang, F. et al. Interface synergistic effects induced multi-mode luminescence. Nano Res. 2022, 75, 4457–4465.

    Google Scholar 

  13. Kokkonen, M.; Talebi, P.; Zhou, J.; Asgari, S.; Soomro, S. A.; Elsehrawy, F.; Halme, J.; Ahmad, S.; Hagfeldt, A.; Hashmi, S. G. Advanced research trends in dye-sensitized solar cells. J. Mater. Chem. A 2020, 9, 10527–10545.

    Google Scholar 

  14. Liang, J. J.; Tong, K.; Pei, Q. B. A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable thin-film transistors. Adv. Mater. 2016, 28, 5986–5996.

    CAS  Google Scholar 

  15. Jun, H. Y.; Lee, E. J.; Ryu, S. O. Synthesis and characterization of copper ink and direct printing of copper patterns by inkjet printing for electronic devices. Curr. Appl. Phys. 2020, 20, 853–861.

    Google Scholar 

  16. Gemeiner, P.; Pavličková, M.; Hatala, M.; Hvojnik, M.; Homola, T.; Mikula, M. The effect of secondary dopants on screen-printed PEDOT: PSS counter-electrodes for dye-sensitized solar cells. J. Appl. Polym. Sci. 2022, 139, 51929.

    CAS  Google Scholar 

  17. Pan, K. W.; Fan, Y. Y.; Leng, T.; Li, J. S.; **n, Z. Y.; Zhang, J. W.; Hao, L.; Gallop, J.; Novoselov, K. S.; Hu, Z. R. Sustainable production of highly conductive multilayer graphene ink for wireless connectivity and IoT applications. Nat. Commun. 2018, 9, 5197.

    Google Scholar 

  18. Chen, K.; Gao, W.; Emaminejad, S.; Kiriya, D.; Ota, H.; Nyein, H. Y. Y.; Takei, K.; Javey, A. Printed carbon nanotube electronics and sensor systems. Adv. Mater. 2016, 28, 4397–4414.

    CAS  Google Scholar 

  19. Goh, Y.; Lauro, S.; Barber, S. T.; Williams, S. A.; Trabold, T. A. Cleaner production of flexographic ink by substituting carbon black with biochar. J. Clean. Prod. 2021, 324, 129262.

    CAS  Google Scholar 

  20. Ding, H.; He, P.; Yang, J. X.; Liu, C. G.; Zhao, H.; Derby, B. Water-based highly conductive graphene inks for fully printed humidity sensors. J. Phys. D Appl. Phys. 2020, 53, 455304.

    CAS  Google Scholar 

  21. Liu, L. X.; Shen, Z. G.; Zhang, X. J.; Ma, H. Highly conductive graphene/carbon black screen printing inks for flexible electronics. J. Colloid Interface Sci. 2021, 582, 12–21.

    CAS  Google Scholar 

  22. Mohammadi, A. V.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581.

    Google Scholar 

  23. Jiang, J. Z.; Bai, S. S.; Zou, J.; Liu, S.; Hsu, J. P.; Li, N.; Zhu, G. Y.; Zhuang, Z. C.; Kang, Q.; Zhang, Y. Z. Improving stability of MXenes. Nano Res. 2022, 15, 6551–6567.

    CAS  Google Scholar 

  24. Yu, L. H.; Fan, Z. D.; Shao, Y. L.; Tian, Z. N.; Sun, J. Y.; Liu, Z. F. Versatile N-doped MXene ink for printed electrochemical energy storage application. Adv. Energy Mater. 2019, 9, 1901839.

    Google Scholar 

  25. Wu, H.; **e, Y. M.; Ma, Y. A.; Zhang, B. B.; **a, B.; Zhang, P. X.; Qian, W.; He, D. P.; Zhang, X.; Li, B. W. et al. Aqueous MXene/xanthan gum hybrid inks for screen-printing electromagnetic shielding, joule heater, and piezoresistive sensor. Small 2022, 18, 2107087.

    CAS  Google Scholar 

  26. Li, X.; Sun, R. J.; Pan, J. Y.; Shi, Z. H.; Lv, J. J.; An, Z. J.; He, Y.; Chen, Q. M.; Han, R. P. S.; Zhang, F. N. et al. All-MXene-printed RF resonators as wireless plant wearable sensors for in situ ethylene detection. Small, in press, DOI: https://doi.org/10.1002/smll.202207889.

  27. Chen, Y. A.; Li, Y. H.; Liu, Y.; Chen, P.; Zhang, C. Z.; Qi, H. S. Holocellulose nanofibril-assisted intercalation and stabilization of Ti3C2Tx MXene inks for multifunctional sensing and EMI shielding applications. ACS Appl. Mater. Interfaces 2021, 13, 36221–36231.

    CAS  Google Scholar 

  28. Deng, Z. M.; Li, L. L.; Tang, P. P.; Jiao, C. Y.; Yu, Z. Z.; Koo, C. M.; Zhang, H. B. Controllable surface-grafted MXene inks for electromagnetic wave modulation and infrared anti-counterfeiting applications. ACS Nano 2022, 16, 16976–16986.

    CAS  Google Scholar 

  29. Abdolhosseinzadeh, S.; Schneider, R.; Verma, A.; Heier, J.; Nüesch, F.; Zhang, C. F. Turning trash into treasure: Additive free MXene sediment inks for screen-printed micro-supercapacitors. Adv. Mater. 2020, 32, 2000716.

    CAS  Google Scholar 

  30. Sarycheva, A.; Polemi, A.; Liu, Y. Q.; Dandekar, K.; Anasori, B.; Gogotsi, Y. 2D titanium carbide (MXene) for wireless communication. Sci. Adv. 2018, 4, eaau0920.

    Google Scholar 

  31. Huang, L.; Huang, Y.; Liang, J. J.; Wan, X. J.; Chen, Y. S. Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res. 2011, 4, 675–684.

    CAS  Google Scholar 

  32. Zhang, J. Z.; Uzun, S.; Seyedin, S.; Lynch, P. A.; Akuzum, B.; Wang, Z. Y.; Qin, S.; Alhabeb, M.; Shuck, C. E.; Lei, W. W. et al. Additive-free MXene liquid crystals and fibers. ACS Cent. Sci. 2020, 6, 254–265.

    CAS  Google Scholar 

  33. Onsager, L. The effects of shape on the interaction of colloidal particles. Ann. New York Acad. Sci. 1949, 51, 627–659.

    CAS  Google Scholar 

  34. Tezel, G. B.; Arole, K.; Holta, D. E.; Radovic, M.; Green, M. J. Interparticle interactions and rheological signatures of Ti3C2Tz MXene dispersions. J. Colloid Interface Sci. 2022, 605, 120–128.

    CAS  Google Scholar 

  35. Leng, T.; Pan, K. W.; Zhang, Y. W.; Li, J. S.; Afroj, S. L.; Novoselov, K. S.; Hu, Z. R. Screen-printed graphite nanoplate conductive ink for machine learning enabled wireless radiofrequency-identification sensors. ACS Appl. Nano Mater. 2019, 2, 6197–6208.

    CAS  Google Scholar 

  36. Lin, M. Y.; Gai, Y. Z.; **ao, D.; Tan, H. J.; Zhao, Y. P. Preparation of pristine graphene paste for screen printing patterns with high conductivity. Chem. Phys. Lett. 2018, 713, 98–104.

    CAS  Google Scholar 

  37. Xu, L. Y.; Wang, H. P.; Wu, Y. D.; Wang, Z. A.; Wu, L. X.; Zheng, L. H. A one-step approach to green and scalable production of graphene inks for printed flexible film heaters. Mater. Chem. Front. 2021, 5, 1895–1905.

    CAS  Google Scholar 

  38. Wang, J. J.; Du, Y.; Qin, J.; Wang, L.; Meng, Q. F.; Li, Z. Y.; Shen, S. Z. Flexible thermoelectric reduced graphene oxide/Ag2S/methyl cellulose composite film prepared by screen printing process. Polymers 2022, 14, 5437.

    CAS  Google Scholar 

  39. Zheng, S. H.; Wang, H.; Das, P.; Zhang, Y.; Cao, Y. X.; Ma, J. X.; Liu, S. Z.; Wu, Z. S. Multitasking MXene inks enable high-performance printable microelectrochemical energy storage devices for all-flexible self-powered integrated systems. Adv. Mater. 2021, 33, 2005449.

    CAS  Google Scholar 

  40. Wan, S. J.; Li, X.; Chen, Y.; Liu, N. N.; Wang, S. J.; Du, Y.; Xu, Z. P.; Deng, X. L.; Dou, S. X.; Jiang, L. et al. Ultrastrong MXene films via the synergy of intercalating small flakes and interfacial bridging. Nat. Commun. 2022, 13, 7340.

    Google Scholar 

  41. Arapov, K.; Jaakkola, K.; Ermolov, V.; Bex, G.; Rubingh, E.; Haque, S.; Sandberg, H.; Abbel, R.; De With, G.; Friedrich, H. Graphene screen-printed radio-frequency identification devices on flexible substrates. Phys. Status Solidi. Rapid Res. Lett. 2016, 10, 812–818.

    CAS  Google Scholar 

  42. Zhang, B. H.; Wang, Z.; Song, R. G.; Fu, H. Q.; Zhao, X.; Zhang, C.; He, D. P.; Wu, Z. P. Passive UHF RFID tags made with graphene assembly film-based antennas. Carbon 2021, 178, 803–809.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22279097), the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City (No. 520LH054), and the Fundamental Research Funds for the Central Universities (WUT: 2021IVA66).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **@whut.edu.cn">Da** He.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Fu, H., Si, Y. et al. Size effect enabling additive-free MXene ink with ultrahigh conductivity for screen printing of wireless electronics. Nano Res. 16, 11012–11017 (2023). https://doi.org/10.1007/s12274-023-5762-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5762-3

Keywords

Navigation