Log in

Chain-flip plate triboelectric nanogenerator arranged longitudinally under water for harvesting water wave energy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Triboelectric nanogenerator (TENG) is a new cost-effective blue energy harvesting technology for its great performance in low frequency. However, many related energy harvesters operate on water surface, ignoring the ocean’s depth. Herein, a chain-flipped plate TENG (CFP-TENG), consisting of longitudinally arranged repeating units, is proposed to collect wave energy. The chain structure design allows the surface wave energy to act effectively on the underwater generator. The maximum output power per unit ocean area reaches 1.5 W·m−2 at a loading resistance of 30 MΩ. Optimization of device parameters and application demonstrations are explored. Compared with previous works, the utilization rate of wave energy has been significantly improved. This work not only provides a new method to optimize the output of TENG but also makes a crucial step in promoting practical applications of TENG in renewable blue energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

    Article  CAS  Google Scholar 

  2. Long, L.; Liu, W. L.; Wang, Z.; He, W. C.; Li, G.; Tang, Q.; Guo, H. Y.; Pu, X. J.; Liu, Y. K.; Hu, C. G. High performance floating self-excited sliding triboelectric nanogenerator for micro mechanical energy harvesting. Nat. Commun. 2021, 12, 4689.

    Article  CAS  Google Scholar 

  3. Liang, X.; Jiang, T.; Liu, G. X.; **ao, T. X.; Xu, L.; Li, W.; **, F. B.; Zhang, C.; Wang, Z. L. Triboelectric nanogenerator networks integrated with power management module for water wave energy harvesting. Adv. Funct. Mater. 2019, 29, 1807241.

    Article  CAS  Google Scholar 

  4. Du, Y.; Fu, S. K.; Shan, C. C.; Wu, H. Y.; He, W. C.; Wang, J.; Guo, H. Y.; Li, G.; Wang, Z.; Hu, C. G. A novel design based on mechanical time-delay switch and charge space accumulation for high output performance direct-current triboelectric nanogenerator. Adv. Funct. Mater. 2022, 32, 2208783.

    Article  CAS  Google Scholar 

  5. Liang, X.; Liu, Z. R.; Feng, Y. W.; Han, J. J.; Li, L. L.; An, J.; Chen, P. F.; Jiang, T.; Wang, Z. L. Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting. Nano Energy 2021, 83, 105836.

    Article  CAS  Google Scholar 

  6. Du, Y.; Tang, Q.; He, W. C.; Liu, W. L.; Wang, Z.; Wu, H. Y.; Li, G.; Guo, H. Y.; Li, Z. J.; Peng, Y. et al. Harvesting ambient mechanical energy by multiple mode triboelectric nanogenerator with charge excitation for self-powered freight train monitoring. Nano Energy 2021, 90, 106543.

    Article  CAS  Google Scholar 

  7. Xu, Y. H.; Yang, W. X.; Lu, X. H.; Yang, Y. F.; Li, J. P.; Wen, J. M.; Cheng, T. H.; Wang, Z. L. Triboelectric nanogenerator for ocean wave graded energy harvesting and condition monitoring. ACS Nano 2021, 15, 16368–16375.

    Article  CAS  Google Scholar 

  8. Jiang, T.; Pang, H.; An, J.; Lu, P. J.; Feng, Y. W.; Liang, X.; Zhong, W.; Wang, Z. L. Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Adv. Energy Mater. 2020, 10, 2000064.

    Article  CAS  Google Scholar 

  9. Zhang, C. G.; Zhou, L. L.; Cheng, P.; Liu, D.; Zhang, C. L.; Li, X. Y.; Li, S. X.; Wang, J.; Wang, Z. L. Bifilar-pendulum-assisted multilayer-structured triboelectric nanogenerators for wave energy harvesting. Adv. Energy Mater. 2021, 11, 2003616.

    Article  CAS  Google Scholar 

  10. Xu, L. Y.; Xu, L.; Luo, J. J.; Yan, Y.; Jia, B. E.; Yang, X. D.; Gao, Y. H.; Wang, Z. L. Hybrid all-in-one power source based on high-performance spherical triboelectric nanogenerators for harvesting environmental energy. Adv. Energy Mater. 2020, 10, 2001669.

    Article  CAS  Google Scholar 

  11. Li, X. Y.; Zhang, C. G.; Gao, Y. K.; Zhao, Z. H.; Hu, Y. X.; Yang, O.; Liu, L.; Zhou, L. L.; Wang, J.; Wang, Z. L. A highly efficient constant-voltage triboelectric nanogenerator. Energy Environ. Sci. 2022, 15, 1334–1345.

    Article  Google Scholar 

  12. Wu, H.; Wang, S.; Wang, Z. K.; Zi, Y. L. Achieving ultrahigh instantaneous power density of 10 MW/m2 by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG). Nat. Commun. 2021, 12, 5470.

    Article  CAS  Google Scholar 

  13. Lin, L.; Wang, S. H.; Niu, S. M.; Liu, C.; **e, Y. N.; Wang, Z. L. Noncontact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor. ACS Appl. Mater. Interfaces 2014, 6, 3031–3038.

    Article  CAS  Google Scholar 

  14. He, W. C.; Liu, W. L.; Chen, J.; Wang, Z.; Liu, Y. K.; Pu, X. J.; Yang, H. M.; Tang, Q.; Yang, H. K.; Guo, H. Y. et al. Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect. Nat. Commun. 2020, 11, 4277.

    Article  CAS  Google Scholar 

  15. Chen, J.; Guo, H. Y.; Hu, C. G.; Wang, Z. L. Robust triboelectric nanogenerator achieved by centrifugal force induced automatic working mode transition. Adv. Energy Mater. 2020, 10, 2000886.

    Article  CAS  Google Scholar 

  16. Liu, Y. K.; Liu, W. L.; Wang, Z.; He, W. C.; Tang, Q.; **, Y.; Wang, X.; Guo, H. Y.; Hu, C. G. Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density. Nat. Commun. 2020, 11, 1599.

    Article  CAS  Google Scholar 

  17. Zhou, L. L.; Gao, Y. K.; Liu, D.; Liu, L.; Zhao, Z. Z.; Li, S. X.; Yuan, W.; Cui, S. N.; Wang, Z. L.; Wang, J. Achieving ultrarobust and humidity-resistant triboelectric nanogenerator by dual-capacitor enhancement system. Adv. Energy Mater. in press, https://doi.org/10.1002/aenm.202101958.

  18. Cheng, B. L.; Xu, Q.; Ding, Y. Q.; Bai, S.; Jia, X. F.; Yu, Y. D. C.; Wen, J.; Qin, Y. High performance temperature difference triboelectric nanogenerator. Nat. Commun. 2021, 12, 4782.

    Article  CAS  Google Scholar 

  19. Wu, H. Y.; He, W. C.; Shan, C. C.; Wang, Z.; Fu, S. K.; Tang, Q.; Guo, H. Y.; Du, Y.; Liu, W. L.; Hu, C. G. Achieving remarkable charge density via self-polarization of polar high-k material in a charge-excitation triboelectric nanogenerator. Adv. Mater. 2022, 34, 2109918.

    Article  CAS  Google Scholar 

  20. Chao, S. Y.; Ouyang, H.; Jiang, D. J.; Fan, Y. B.; Li, Z. Triboelectric nanogenerator based on degradable materials. EcoMat 2020, 3, e12072.

    Article  Google Scholar 

  21. Zhao, Z. H.; Zhou, L. L.; Li, S. X.; Liu, D.; Li, Y. H.; Gao, Y. K.; Liu, Y. B.; Dai, Y. J.; Wang, J.; Wang, Z. L. Selection rules of triboelectric materials for direct-current triboelectric nanogenerator. Nat. Commun. 2021, 12, 4686.

    Article  CAS  Google Scholar 

  22. He, W. C.; Liu, W. L.; Fu, S. K.; Wu, H. Y.; Shan, C. C.; Wang, Z.; **, Y.; Wang, X.; Guo, H. Y.; Liu, H. et al. Ultrahigh performance triboelectric nanogenerator enabled by charge transmission in interfacial lubrication and potential decentralization design. Research 2022, 2022, 9812865.

    Article  CAS  Google Scholar 

  23. Han, K.; Tang, W.; Chen, J.; Luo, J. J.; Xu, L.; Wang, Z. L. Effects of environmental atmosphere on the performance of contact-separation mode TENG. Adv. Mater. Technol. 2019, 4, 1800569.

    Google Scholar 

  24. Wang, J.; Wu, C. S.; Dai, Y. J.; Zhao, Z. H.; Wang, A.; Zhang, T. J.; Wang, Z. L. Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nat. Commun. 2017, 8, 88.

    Article  Google Scholar 

  25. Liu, W. L.; Wang, Z.; Wang, G.; Liu, G. L.; Chen, J.; Pu, X. J.; **, Y.; Wang, X.; Guo, H. Y.; Hu, C. G. et al. Integrated charge excitation triboelectric nanogenerator. Nat. Commun. 2019, 10, 1426.

    Article  Google Scholar 

  26. Bai, Y.; Xu, L.; Lin, S. Q.; Luo, J. J.; Qin, H. F.; Han, K.; Wang, Z. L. Charge pum** strategy for rotation and sliding type triboelectric nanogenerators. Adv. Energy Mater. 2020, 10, 2000605.

    Article  CAS  Google Scholar 

  27. Cheng, L.; Xu, Q.; Zheng, Y. B.; Jia, X. F.; Qin, Y. A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed. Nat. Commun. 2018, 9, 3773.

    Article  Google Scholar 

  28. Zhou, H.; Huang, W.; **ao, Z.; Zhang, S. C.; Li, W. Z.; Hu, J. H.; Feng, T. X.; Wu, J.; Zhu, P. C.; Mao, Y. C. Deep-learning-assisted noncontact gesture-recognition system for touchless human–machine interfaces. Adv. Funct. Mater. 2022, 32, 2208271.

    Article  CAS  Google Scholar 

  29. Leng, Z. W.; Zhu, P. C.; Wang, X. C.; Wang, Y. F.; Li, P. S.; Huang, W.; Li, B. C.; **, R.; Han, N. N.; Wu, J. et al. Sebum-membrane-inspired protein-based bioprotonic hydrogel for artificial skin and human–machine merging interface. Adv. Funct. Mater. 2023, 33, 2211056.

    Article  CAS  Google Scholar 

  30. Zhu, P. C.; Zhang, B. S.; Wang, H. Y.; Wu, Y. H.; Cao, H. J.; He, L. B.; Li, C. Y.; Luo, X. P.; Li, X.; Mao, Y. C. 3D printed triboelectric nanogenerator as self-powered human–machine interactive sensor for breathing-based language expression. Nano Res. 2022, 15, 7460–7467.

    Article  Google Scholar 

  31. Zhao, L. C.; Zou, H. X.; Zhao, Y. J.; Wu, Z. Y.; Liu, F. R.; Wei, K. X.; Zhang, W. M. Hybrid energy harvesting for self-powered rotor condition monitoring using maximal utilization strategy in structural space and operation process. Appl. Energy 2022, 314, 118983.

    Article  Google Scholar 

  32. Zhao, L. C.; Zou, H. X.; **e, X.; Guo, D. H.; Gao, Q. H.; Wu, Z. Y.; Yan, G.; Wei, K. X.; Zhang, W. M. Mechanical intelligent wave energy harvesting and self-powered marine environment monitoring. Nano Energy 2023, 108, 108222.

    Article  CAS  Google Scholar 

  33. Shan, C. C.; He, W. C.; Wu, H. Y.; Fu, S. K.; Tang, Q.; Wang, Z.; Du, Y.; Wang, J.; Guo, H. Y.; Hu, C. G. A high-performance bidirectional direct current TENG by triboelectrification of two dielectrics and local corona discharge. Adv. Energy Mater. 2022, 12, 2200963.

    Article  CAS  Google Scholar 

  34. He, W. C.; Shan, C. C.; Wu, H. Y.; Fu, S. K.; Li, Q. Y.; Li, G.; Zhang, X. M.; Du, Y.; Wang, J.; Wang, X. et al. Capturing dissipation charge in charge space accumulation area for enhancing output performance of sliding triboelectric nanogenerator. Adv. Energy Mater. 2022, 12, 2201454.

    Article  CAS  Google Scholar 

  35. Feng, Y. W.; Jiang, T.; Liang, X.; An, J.; Wang, Z. L. Cylindrical triboelectric nanogenerator based on swing structure for efficient harvesting of ultra-low-frequency water wave energy. Appl. Phys. Rev. 2020, 7, 021401.

    Article  CAS  Google Scholar 

  36. Tan, D. J.; Zeng, Q. X.; Wang, X.; Yuan, S. L.; Luo, Y. L.; Zhang, X. F.; Tan, L. M.; Hu, C. G.; Liu, G. L. Anti-overturning fully symmetrical triboelectric nanogenerator based on an elliptic cylindrical structure for all-weather blue energy harvesting. Nano-Micro Lett. 2022, 14, 124.

    Article  CAS  Google Scholar 

  37. Zhang, C. G.; He, L. X.; Zhou, L. L.; Yang, O.; Yuan, W.; Wei, X. L.; Liu, Y. B.; Lu, L.; Wang, J.; Wang, Z. L. Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy. Joule 2021, 5, 1613–1623.

    Article  Google Scholar 

  38. Lei, R.; Zhai, H.; Nie, J. H.; Zhong, W.; Bai, Y.; Liang, X.; Xu, L.; Jiang, T.; Chen, X. Y.; Wang, Z. L. Butterfly-inspired triboelectric nanogenerators with spring-assisted linkage structure for water wave energy harvesting. Adv. Mater. Technol. 2019, 4, 1800514.

    Article  Google Scholar 

  39. Liu, G. L.; Guo, H. Y.; Xu, S. X.; Hu, C. G.; Wang, Z. L. Oblate spheroidal triboelectric nanogenerator for all-weather blue energy harvesting. Adv. Energy Mater. 2019, 9, 1900801.

    Article  Google Scholar 

  40. Zhang, D. H.; Shi, J. W.; Si, Y. L.; Li, T. Multi-grating triboelectric nanogenerator for harvesting low-frequency ocean wave energy. Nano Energy 2019, 61, 132–140.

    Article  CAS  Google Scholar 

  41. Su, Y. J.; Wen, X. N.; Zhu, G.; Yang, J.; Chen, J.; Bai, P.; Wu, Z. M.; Jiang, Y. D.; Wang, Z. L. Hybrid triboelectric nanogenerator for harvesting water wave energy and as a self-powered distress signal emitter. Nano Energy 2014, 9, 186–195.

    Article  CAS  Google Scholar 

  42. Liu, W. B.; Xu, L.; Bu, T. Z.; Yang, H.; Liu, G. X.; Li, W. J.; Pang, Y. K.; Hu, C. X.; Zhang, C.; Cheng, T. H. Torus structured triboelectric nanogenerator array for water wave energy harvesting. Nano Energy 2019, 58, 499–507.

    Article  CAS  Google Scholar 

  43. Zhang, Z. Y.; Hu, Z. Y.; Wang, Y.; Wang, Y. W.; Zhang, Q. Q.; Liu, D. H.; Wang, H.; Xu, M. Y. Multi-tunnel triboelectric nanogenerator for scavenging mechanical energy in marine floating bodies. J. Mar. Sci. Eng. 2022, 10, 455.

    Article  Google Scholar 

  44. Meng, L. X.; Yang, Y. F.; Liu, S. M.; Wang, S.; Zhang, T.; Guo, X. L. Energy storage triboelectric nanogenerator based on ratchet mechanism for random ocean energy harvesting. ACS Omega 2023, 8, 1362–1368.

    Article  CAS  Google Scholar 

  45. Cheng, P.; Liu, Y. N.; Wen, Z.; Shao, H. Y.; Wei, A. M.; **e, X. K.; Chen, C.; Yang, Y. Q.; Peng, M. F.; Zhuo, Q. Q. et al. Atmospheric pressure difference driven triboelectric nanogenerator for efficiently harvesting ocean wave energy. Nano Energy 2018, 54, 156–162.

    Article  Google Scholar 

  46. **a, K. Q.; Fu, J. M.; Xu, Z. W. Multiple-frequency high-output triboelectric nanogenerator based on a water balloon for all-weather water wave energy harvesting. Adv. Energy Mater. 2020, 10, 2000426.

    Article  CAS  Google Scholar 

  47. Ahmed, A.; Saadatnia, Z.; Hassan, I.; Zi, Y. L.; **, Y.; He, X.; Zu, J.; Wang, Z. L. Self-powered wireless sensor node enabled by a duck-shaped triboelectric nanogenerator for harvesting water wave energy. Adv. Energy Mater. 2017, 7, 1601705.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program from Minister of Science and Technology (No. 2021YFA1201602) and the National Natural Science Foundation of China (Nos. U21A20147 and 52073037). The authors would like to thank Analytical and Testing Center of Chongqing University for some electrode preparations and material characterizations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian Tang or Chenguo Hu.

Electronic Supplementary Material

Chain-flip plate triboelectric nanogenerator arranged longitudinally under water for harvesting water wave energy

Supplementary material, approximately 5.60 MB.

Supplementary material, approximately 856 KB.

Supplementary material, approximately 5.17 MB.

Supplementary material, approximately 9.82 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Tang, Q., Fu, S. et al. Chain-flip plate triboelectric nanogenerator arranged longitudinally under water for harvesting water wave energy. Nano Res. 16, 11900–11906 (2023). https://doi.org/10.1007/s12274-023-5733-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5733-8

Keywords

Navigation