Log in

Atomic regulations of single atom from metal-organic framework derived carbon for advanced water treatment

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Single atom (SA)-embedded nitrogen-doped carbon has shown great potential in environmental remediation. Nowadays, engineered nanomaterials (ENMs) have attracted great research interests in recent years. Metal-organic framework (MOF) derived SAs show the advantages of tunable topology and averaged separated active sites. SAs bridge the gap between homogeneous and heterogeneous catalysts. The reaction efficiency can be significantly improved by designing the MOFs derived from carbon and SAs. In this review, the research advanced in MOFs-derived carbon and SAs in advanced oxidation process (AOP) in water were summarized. Major strategies to fabricate the SAs derived from MOFs were discussed, including the mixed/single metal strategy, metal-containing linker strategy, pore confinement strategy, thermal diffusion strategy, and pyrolysis MOFs with bulk metals. Advanced characterization technologies have been introduced, including electron microscopy and spectroscopic methods. To explain the catalytic mechanism for various applications, the relationship between the performance and the atomic configuration was systematically discussed. Recent applications of the MOFs derived from carbon and SAs have been summarized. A series of the latest work on effectively removing pollutants by SAs are also listed. Based on the fundamental knowledge and recent practical application of MOFs-derived carbon and SAs, some perspectives on the further directions were presented. This review offers guidance for applying novel engineered nanomaterials in the water treatment field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Mariñas, B. J.; Mayes, A. M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310.

    CAS  Google Scholar 

  2. Schwarzenbach, R. P.; Escher, B. I.; Fenner, K.; Hofstetter, T. B.; Johnson, A.; von Gunten, U.; Wehrli, B. The challenge of micropollutants in aquatic systems. Science 2006, 313, 1072–1077.

    CAS  Google Scholar 

  3. Vorkamp, K.; Bossi, R.; Bester, K.; Bollmann, U. E.; Boutrup, S. New priority substances of the European water framework directive: Biocides, pesticides and brominated flame retardants in the aquatic environment of Denmark. Sci. Total Environ. 2014, 470–471, 459–468.

    Google Scholar 

  4. Glaze, W. H.; Kang, J. W.; Chapin, D. H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci. Eng. 1987, 9, 335–352.

    CAS  Google Scholar 

  5. EPA. Safe drinking water act [Online]. https://www.epa.gov/sdwa (accessed Jan 01, 2022).

  6. Archer, E.; Petrie, B.; Kasprzyk-Hordern, B.; Wolfaardt, G. M. The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters. Chemosphere 2017, 174, 437–446.

    CAS  Google Scholar 

  7. Hao, R. Z.; Zhao, R. T.; Qiu, S. F.; Wang, L. G.; Song, H. B. Antibiotics crisis in China. Science 2015, 348, 1100–1101.

    Google Scholar 

  8. Stumpf, M.; Ternes, T. A.; Wilken, R. D.; Rodrigues, S. V. Baumann, W. Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil. Sci. Total Environ. 1999, 225, 135–141.

    Google Scholar 

  9. Contaminants candidate list (CCL) [Online]. https://www.epa.gov/ccl (accessed Jul 19, 2021).

  10. Hodges, B. C.; Cates, E. L.; Kim, J. H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nat. Nanotechnol. 2018, 13, 642–650.

    CAS  Google Scholar 

  11. Alsbaiee, A.; Smith, B. J.; **ao, L. L.; Ling, Y. H.; Helbling, D. E.; Dichtel, W. R. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature 2016, 529, 190–194.

    CAS  Google Scholar 

  12. Gang, D.; Uddin Ahmad, Z.; Lian, Q. Y.; Yao, L. G.; Zappi, M. E. A review of adsorptive remediation of environmental pollutants from aqueous phase by ordered mesoporous carbon. Chem. Eng. J. 2021, 403, 126286.

    CAS  Google Scholar 

  13. Ji, W.; **ao, L. L.; Ling, Y. H.; Ching, C.; Matsumoto, M.; Bisbey, R. P.; Helbling, D. E.; Dichtel, W. R. Removal of GenX and perfluorinated alkyl substances from water by amine-functionalized covalent organic frameworks. J. Am. Chem. Soc. 2018, 140, 12677–12681.

    CAS  Google Scholar 

  14. Seo, P. W.; Bhadra, B. N.; Ahmed, I.; Khan, N. A.; Jhung, S. H. Adsorptive removal of pharmaceuticals and personal care products from water with functionalized metal-organic frameworks: Remarkable adsorbents with hydrogen-bonding abilities. Sci. Rep. 2016, 6, 34462.

    CAS  Google Scholar 

  15. Liu, Y. B.; Gao, G. D.; Vecitis, C. D. Prospects of an electroactive carbon nanotube membrane toward environmental applications. Acc. Chem. Res. 2020, 53, 2892–2902.

    CAS  Google Scholar 

  16. Liu, Y. M.; Quan, X.; Fan, X. F.; Wang, H.; Chen, S. High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. Angew. Chem., Int. Ed. 2015, 54, 6837–6841.

    CAS  Google Scholar 

  17. Ganiyu, S. O.; Zhou, M. G.; Martínez-Huitle, C. A. Heterogeneous electro-Fenton and photoelectro-Fenton processes: A critical review of fundamental principles and application for water/wastewater treatment. Appl. Catal. B Environ. 2018, 235, 103–129.

    CAS  Google Scholar 

  18. Liu, F. Q.; Liu, Y. B.; Yao, Q. F.; Wang, Y. X.; Fang, X. F.; Shen, C. S.; Li, F.; Huang, M. H.; Wang, Z. W.; Sand, W. et al. Supported atomically-precise gold nanoclusters for enhanced flow-through electro-Fenton. Environ. Sci. Technol. 2020, 54, 5913–5921.

    CAS  Google Scholar 

  19. Hu, J. J.; Wang, S.; Yu, J. Q.; Nie, W. K.; Sun, J.; Wang, S. B. Duet Fe3C and FeNx sites for H2O2 generation and activation toward enhanced electro-Fenton performance in wastewater treatment. Environ. Sci. Technol. 2021, 55, 1260–1269.

    CAS  Google Scholar 

  20. Qian, L.; Kopinke, F. D.; Georgi, A. Photodegradation of perfluorooctanesulfonic acid on Fe-zeolites in water. Environ. Sci. Technol. 2021, 55, 614–622.

    CAS  Google Scholar 

  21. Wang, C. C.; Li, J. R.; Lv, X. L.; Zhang, Y. Q.; Guo, G. S. Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy Environ. Sci. 2014, 7, 2831–2867.

    CAS  Google Scholar 

  22. Yang, Z. C.; Qian, J. S.; Yu, A. Q.; Pan, B. C. Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement. Proc. Natl. Acad. Sci. USA 2019, 116, 6659–6664.

    CAS  Google Scholar 

  23. Yang, Z. C.; Shan, C.; Pan, B. C.; Pignatello, J. J. The Fenton reaction in water assisted by picolinic acid: Accelerated iron cycling and Co-generation of a selective Fe-based oxidant. Environ. Sci. Technol. 2021, 55, 8299–8308.

    CAS  Google Scholar 

  24. Xu, S. Q.; Zhu, H. X.; Cao, W. R.; Wen, Z. B.; Wang, J. N.; François-Xavier, C. P.; Wintgens, T. Cu−Al2O3−g−C3N4 and Cu−Al2O3−C-dots with dual-reaction centers for simultaneous enhancement of Fenton-like catalytic activity and selective H2O2 conversion to hydroxyl radicals. Appl. Catal. B Environ. 2018, 234, 223–233.

    CAS  Google Scholar 

  25. Wardman, P. Reduction potentials of one-electron couples involving free radicals in aqueous solution. J. Phys. Chem. Ref. Data 1989, 18, 1637–1755.

    CAS  Google Scholar 

  26. Qian, Y. T.; Zhang, F. F.; Pang, H. A review of MOFs and their composites-based photocatalysts: Synthesis and applications. Adv. Funct. Mater. 2021, 31, 2104231.

    CAS  Google Scholar 

  27. Xu, J. X.; Olvera-Vargas, H.; Loh, B. J. H.; Lefebvre, O. FTO-TiO2 photoelectrocatalytic degradation of triphenyltin chloride coupled to photoelectro-Fenton: A mechanistic study. Appl. Catal. B Environ. 2020, 271, 118923.

    CAS  Google Scholar 

  28. Duan, P. J.; Ma, T. F.; Yue, Y.; Li, Y. W.; Zhang, X.; Shang, Y. N.; Gao, B. Y.; Zhang, Q. Z.; Yue, Q. Y.; Xu, X. Fe/Mn nanoparticles encapsulated in nitrogen-doped carbon nanotubes as a peroxymonosulfate activator for acetamiprid degradation. Environ. Sci. Nano 2019, 6, 1799–1811.

    CAS  Google Scholar 

  29. Peng, L. J.; Shang, Y. N.; Gao, B. Y.; Xu, X. Co3O4 anchored in N, S heteroatom co-doped porous carbons for degradation of organic contaminant: Role of pyridinic N-Co binding and high tolerance of chloride. Appl. Catal. B Environ. 2021, 282, 119484.

    CAS  Google Scholar 

  30. Thomas, J. K. Rates of reaction of the hydroxyl radical. Trans. Faraday Soc. 1965, 61, 702–707.

    CAS  Google Scholar 

  31. Staehelin, J.; Hoigne, J. Decomposition of ozone in water: Rate of initiation by hydroxide ions and hydrogen peroxide. Environ. Sci. Technol. 1982, 16, 676–681.

    CAS  Google Scholar 

  32. Brillas, E.; Sirés, I.; Oturan, M. A. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem. Rev. 2009, 109, 6570–6631.

    CAS  Google Scholar 

  33. Neyens, E.; Baeyens, J. A review of classic Fenton’s peroxidation as an advanced oxidation technique. J. Hazard. Mater. 2003, 98, 33–50.

    CAS  Google Scholar 

  34. Zhou, X. M.; Yang, H. C.; Wang, C. X.; Mao, X. B.; Wang, Y. S.; Yang, Y. L.; Liu, G. Visible light induced photocatalytic degradation of Rhodamine B on one-dimensional iron oxide particles. J. Phys. Chem. C 2010, 114, 17051–17061.

    CAS  Google Scholar 

  35. Xu, J. W.; Zheng, X. L.; Feng, Z. P.; Lu, Z. Y.; Zhang, Z. W.; Huang, W.; Li, Y. B.; Vuckovic, D.; Li, Y. Q.; Dai, S. et al. Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2. Nat. Sustain. 2021, 4, 233–241.

    Google Scholar 

  36. Chen, Y.; Zhang, G.; Liu, H. J.; Qu, J. H. Confining free radicals in close vicinity to contaminants enables ultrafast Fenton-like processes in the interspacing of MoS2 membranes. Angew. Chem., Int. Ed. 2019, 58, 8134–8138.

    CAS  Google Scholar 

  37. Zhao, H.; Chen, Y.; Peng, Q.; Wang, Q.; Zhao, G. Catalytic activity of MOF(2Fe/Co)/carbon aerogel for improving H2O2 and ·OH generation in solar photo-electro-Fenton process. Appl. Catal. B Environ. 2017, 203, 127–137.

    CAS  Google Scholar 

  38. Clark, C. A.; Heck, K. N.; Powell, C. D.; Wong, M. S. Highly defective UiO-66 materials for the adsorptive removal of perfluorooctanesulfonate. ACS Sustainable Chem. Eng. 2019, 7, 6619–6628.

    CAS  Google Scholar 

  39. Li, X.; Yao, Y. L.; Wang, B. Incorporating Fe−O cluster in multivariate (MTV) metal-organic frameworks for promoting visible-light photo-Fenton degradation of micropollutants from water. Chem. Eng. J. 2022, 446, 137446.

    CAS  Google Scholar 

  40. Cao, Y. H.; Li, X.; Wang, B. Ultrafast and selective adsorption of pharmaceuticals from wastewater by precisely designed metal organic framework with missing linker defects. J. Clean. Prod. 2022, 380, 135060.

    CAS  Google Scholar 

  41. Li, X. H.; Li, X.; Wang, B. H2O2 activation by two-dimensional metal-organic frameworks with different metal nodes for micropollutants degradation:Metal dependence of boosting reactive oxygen species generation. J. Hazard. Mater. 2022, 440, 129757.

    CAS  Google Scholar 

  42. Cao, Y. H.; Li, X.; Yu, G.; Wang, B. Regulating defective sites for pharmaceuticals selective removal: Structure-dependent adsorption over continuously tunable pores. J. Hazard. Mater. 2023, 442, 130025.

    CAS  Google Scholar 

  43. Li, X.; Chen, X. G.; Lv, Z. Y.; Wang, B. Ultrahigh ciprofloxacin accumulation and visible-light photocatalytic degradation: Contribution of metal organic frameworks carrier in magnetic surface molecularly imprinted polymers. J. Colloid Interface Sci. 2022, 616, 872–885.

    CAS  Google Scholar 

  44. Li, X.; Wang, B.; Cao, Y. H.; Zhao, S.; Wang, H.; Feng, X.; Zhou, J. W.; Ma, X. J. Water contaminant elimination based on metal-organic frameworks and perspective on their industrial applications. ACS Sustainable Chem. Eng. 2019, 7, 4548–4563.

    CAS  Google Scholar 

  45. Mi, X.; Li, X. Construction of a stable porous composite with tunable graphene oxide in Ce-based-MOFs for enhanced solar-photocatalytic degradation of sulfamethoxazole in water. Sep. Purif. Technol. 2022, 301, 122006.

    CAS  Google Scholar 

  46. Li, X.; Chen, X. G.; Wang, B.; Yu, G. Boosting Fe(II) generation in MOFs under visible-light irradiation for accumulated micropollutants decomposition. J. Environ. Chem. Eng. 2022, 10, 108833.

    CAS  Google Scholar 

  47. Li, X.; Gan, X. Y. Photo-Fenton degradation of multiple pharmaceuticals at low concentrations via Cu-doped-graphitic carbon nitride (g-C3N4) under simulated solar irradiation at a wide pH range. J. Environ. Chem. Eng. 2022, 10, 108290.

    CAS  Google Scholar 

  48. Li, Y. Y.; Li, X.; Xu, X. Y.; Wang, B. Mass transfer enhancement for rapid, selective extraction of pharmaceuticals by enlarging the microporous on isostructural zeolitic imidazolate framework-8. Sep. Purif. Technol. 2022, 293, 121102.

    CAS  Google Scholar 

  49. Li, Y. Y.; Li, X.; Wang, B. Constructing tunable coordinatively unsaturated sites in Fe-based metal-organic framework for effective degradation of pharmaceuticals in water: Performance and mechanism. Chemosphere 2023, 310, 136816.

    CAS  Google Scholar 

  50. Suh, M. J.; Weon, S.; Li, R. Y.; Wang, P.; Kim, J. H. Enhanced pollutant adsorption and regeneration of layered double hydroxide-based photoregenerable adsorbent. Environ. Sci. Technol. 2020, 54, 9106–9115.

    CAS  Google Scholar 

  51. Huang, D. H.; Wang, K. X.; Niu, J. F.; Chu, C. H.; Weon, S.; Zhu, Q. H.; Lu, J. J.; Stavitski, E.; Kim, J. H. Amorphous Pd-loaded Ti4O7 electrode for direct anodic destruction of perfluorooctanoic acid. Environ. Sci. Technol. 2020, 54, 10954–10963.

    CAS  Google Scholar 

  52. Klet, R. C.; Tussupbayev, S.; Borycz, J.; Gallagher, J. R.; Stalzer, M. M.; Miller, J. T.; Gagliardi, L.; Hupp, J. T.; Marks, T. J.; Cramer, C. J. et al. Single-site organozirconium catalyst embedded in a metal-organic framework. J. Am. Chem. Soc. 2015, 137, 15680–15683.

    CAS  Google Scholar 

  53. Cheung, Y. H.; Ma, K. K.; van Leeuwen, H. C.; Wasson, M. C.; Wang, X. J.; Idrees, K. B.; Gong, W.; Cao, R.; Mahle, J. J.; Islamoglu, T. et al. Immobilized regenerable active chlorine within a zirconium-based MOF textile composite to eliminate biological and chemical threats. J. Am. Chem. Soc. 2021, 143, 16777–16785.

    CAS  Google Scholar 

  54. Tranchemontagne, D. J.; Mendoza-Cortés, J. L.; O’Keeffe, M.; Yaghi, O. M. Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1257–1283.

    CAS  Google Scholar 

  55. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

    Google Scholar 

  56. Wang, L. J.; Deng, H. X.; Furukawa, H.; Gandara, F.; Cordova, K. E.; Peri, D.; Yaghi, O. M. Synthesis and characterization of metal-organic framework-74 containing 2, 4, 6, 8, and 10 different metals. Inorg. Chem. 2014, 53, 5881–5883.

    CAS  Google Scholar 

  57. Rojas, S.; Horcajada, P. Metal-organic frameworks for the removal of emerging organic contaminants in water. Chem. Rev. 2020, 120, 8378–8415.

    CAS  Google Scholar 

  58. Drout, R. J.; Robison, L.; Chen, Z. J.; Islamoglu, T.; Farha, O. K. Zirconium metal-organic frameworks for organic pollutant adsorption. Trends Chem. 2019, 1, 304–317.

    CAS  Google Scholar 

  59. Cai, G. R.; Jiang, H. L. A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability. Angew. Chem., Int. Ed. 2017, 56, 563–567.

    CAS  Google Scholar 

  60. **ao, J. D.; Jiang, H. L. Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res. 2019, 52, 356–366.

    CAS  Google Scholar 

  61. Ma, X.; Wang, L.; Zhang, Q.; Jiang, H. L. Switching on the photocatalysis of metal-organic frameworks by engineering structural defects. Angew. Chem., Int. Ed. 2019, 58, 12175–12179.

    CAS  Google Scholar 

  62. Jiao, L.; Yang, W. J.; Wan, G.; Zhang, R.; Zheng, X. S.; Zhou, H.; Yu, S. H.; Jiang, H. L. Single-atom electrocatalysts from multivariate metal-organic frameworks for highly selective reduction of CO2 at low pressures. Angew. Chem., Int. Ed. 2020, 59, 20589–20595.

    CAS  Google Scholar 

  63. Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 2008, 130, 5390–5391.

    CAS  Google Scholar 

  64. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    CAS  Google Scholar 

  65. Chao, T. T.; Luo, X.; Chen, W. X.; Jiang, B.; Ge, J. J.; Lin, Y.; Wu, G.; Wang, X. Q.; Hu, Y. M.; Zhuang, Z. B. et al. Atomically dispersed copper-platinum dual sites alloyed with palladium nanorings catalyze the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 16047–16051.

    CAS  Google Scholar 

  66. Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Wang, Y.; Dong, J. C.; Wu, K. L.; Cheong, W. C.; Mao, J. J. et al. Single Tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Adv. Mater. 2018, 30, 1800396.

    Google Scholar 

  67. Jiang, Z. L.; Song, S. J.; Zheng, X. B.; Liang, X.; Li, Z. X.; Gu, H. F.; Li, Z.; Wang, Y.; Liu, S. H.; Chen, W. X. et al. Lattice strain and Schottky junction dual regulation boosts ultrafine ruthenium nanoparticles anchored on a N-modified carbon catalyst for H2 production. J. Am. Chem. Soc. 2022, 144, 19619–19626.

    CAS  Google Scholar 

  68. Zhao, Y. F.; Zhou, H.; Chen, W. X.; Tong, Y. J.; Zhao, C.; Lin, Y.; Jiang, Z.; Zhang, Q. W.; Xue, Z. G.; Cheong, W. C. et al. Two-step carbothermal welding to access atomically dispersed Pd1 on three-dimensional zirconia nanonet for direct indole synthesis. J. Am. Chem. Soc. 2019, 141, 10590–10594.

    CAS  Google Scholar 

  69. Su, X. Z.; Jiang, Z. L.; Zhou, J.; Liu, H. J.; Zhou, D. N.; Shang, H. S.; Ni, X. M.; Peng, Z.; Yang, F.; Chen, W. X. et al. Complementary operando spectroscopy identification of in-situ generated metastable charge-asymmetry Cu2−CuN3 clusters for CO2 reduction to ethanol. Nat. Commun. 2022, 13, 1322.

    CAS  Google Scholar 

  70. Yao, Y. C.; Hu, S. L.; Chen, W. X.; Huang, Z. Q.; Wei, W. C.; Yao, T.; Liu, R. R.; Zang, K. T.; Wang, X. Q.; Wu, G. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2019, 2, 304–313.

    CAS  Google Scholar 

  71. Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu−S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

    CAS  Google Scholar 

  72. Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M. T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 2015, 14, 937–942.

    CAS  Google Scholar 

  73. Jiao, L.; Jiang, H. L. Metal-organic-framework-based single-atom catalysts for energy applications. Chem 2019, 5, 786–804.

    CAS  Google Scholar 

  74. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    CAS  Google Scholar 

  75. Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

    CAS  Google Scholar 

  76. Zhu, P.; **ong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    CAS  Google Scholar 

  77. Zhang, E. H.; Tao, L.; An, J. K.; Zhang, J. W.; Meng, L. Z.; Zheng, X. B.; Wang, Y.; Li, N.; Du, S. X.; Zhang, J. X. et al. Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem., Int. Ed. 2022, 61, e202117347.

    CAS  Google Scholar 

  78. Zhang, E. H.; Hu, X.; Meng, L. Z.; Qiu, M.; Chen, J. X.; Liu, Y. J.; Liu, G. Y.; Zhuang, Z. C.; Zheng, X. B.; Zheng, L. R. et al. Single-atom yttrium engineering Janus electrode for rechargeable Na−S batteries. J. Am. Chem. Soc. 2022, 144, 18995–19007.

    CAS  Google Scholar 

  79. Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.

    CAS  Google Scholar 

  80. Meng, L. Z.; Zhang, E. H.; Peng, H. Y.; Wang, Y.; Wang, D. S.; Rong, H. P.; Zhang, J. T. Bi/Zn dual single-atom catalysts for electroreduction of CO2 to syngas. ChemCatChem 2022, 14, e202101801.

    CAS  Google Scholar 

  81. Chen, F.; Wu, X. L.; Shi, C. Y.; Lin, H. J.; Chen, J. R.; Shi, Y. P.; Wang, S. B.; Duan, X. G. Molecular engineering toward pyrrolic N-rich M−N4 (M = Cr, Mn, Fe, Co, Cu) single-atom sites for enhanced heterogeneous Fenton-like reaction. Adv. Funct. Mater. 2021, 31, 2007877.

    CAS  Google Scholar 

  82. Li, X. N.; Huang, X.; **, S. B.; Miao, S.; Ding, J.; Cai, W. Z.; Liu, S.; Yang, X. L.; Yang, H. B.; Gao, J. J. et al. Single cobalt atoms anchored on porous n-doped graphene with dual reaction sites for efficient Fenton-like catalysis. J. Am. Chem. Soc. 2018, 140, 12469–12475.

    CAS  Google Scholar 

  83. Shang, H. S.; Wang, T.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Wang, Y.; Li, H. J.; Dong, J. C.; Zhuang, Z. B.; Chen, W. X. et al. Design of a single-atom indiumδ+-N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem., Int. Ed. 2020, 59, 22465–22469.

    CAS  Google Scholar 

  84. Liu, S. M.; Xue, W. J.; Ji, Y. J.; Xu, W. Q.; Chen, W. X.; Jia, L. H.; Zhu, T. Y.; Zhong, Z. Y.; Xu, G. W.; Mei, D. H. et al. Interfacial oxygen vacancies at Co3O4−CeO2 heterointerfaces boost the catalytic reduction of NO by CO in the presence of O2. Appl. Catal. B Environ. 2023, 323, 122151.

    CAS  Google Scholar 

  85. **e, X. H.; He, C.; Li, B. Y.; He, Y. H.; Cullen, D. A.; Wegener, E. C.; Kropf, A.; Martinez, U.; Cheng, Y. W.; Engelhard, M. H. et al. Performance enhancement and degradation mechanism identification of a single-atom Co−N−C catalyst for proton exchange membrane fuel cells. Nat. Catal. 2020, 3, 1044–1054.

    CAS  Google Scholar 

  86. Shang, Y. N.; Xu, X.; Gao, B. Y.; Wang, S. B.; Duan, X. G. Single-atom catalysis in advanced oxidation processes for environmental remediation. Chem. Soc. Rev. 2021, 50, 5281–5322.

    CAS  Google Scholar 

  87. Chu, C. H.; Yang, J.; Zhou, X. C.; Huang, D. H.; Qi, H. F.; Weon, S.; Li, J. F.; Elimelech, M.; Wang, A. Q.; Kim, J. H. Cobalt single atoms on tetrapyridomacrocyclic support for efficient peroxymonosulfate activation. Environ. Sci. Technol. 2021, 55, 1242–1250.

    CAS  Google Scholar 

  88. Gao, Y. W.; Zhu, Y.; Li, T.; Chen, Z. H.; Jiang, Q. K.; Zhao, Z. Y.; Liang, X. Y.; Hu, C. Unraveling the high-activity origin of single-atom iron catalysts for organic pollutant oxidation via peroxymonosulfate activation. Environ. Sci. Technol. 2021, 55, 8318–8328.

    CAS  Google Scholar 

  89. Long, Y. K.; Dai, J.; Zhao, S. Y.; Su, Y. P.; Wang, Z. Y.; Zhang, Z. T. Atomically dispersed cobalt sites on graphene as efficient periodate activators for selective organic pollutant degradation. Environ. Sci. Technol. 2021, 55, 5357–5370.

    CAS  Google Scholar 

  90. Zhao, K.; Quan, X.; Su, Y.; Qin, X.; Chen, S.; Yu, H. T. Enhanced chlorinated pollutant degradation by the synergistic effect between dechlorination and hydroxyl radical oxidation on a bimetallic single-atom catalyst. Environ. Sci. Technol. 2021, 55, 14194–14203.

    CAS  Google Scholar 

  91. Cheng, M.; Zeng, G. M.; Huang, D. L.; Lai, C.; Liu, Y.; Zhang, C.; Wan, J.; Hu, L.; Zhou, C. Y.; **ong, W. P. Efficient degradation of sulfamethazine in simulated and real wastewater at slightly basic pH values using Co-SAM-SCS/H2O2 Fenton-like system. Water Res. 2018, 138, 7–18.

    Google Scholar 

  92. Fang, X. Z.; Shang, Q. C.; Wang, Y.; Jiao, L.; Yao, T.; Li, Y. F.; Zhang, Q.; Luo, Y.; Jiang, H. L. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv. Mater. 2018, 30, 1705112.

    Google Scholar 

  93. Yang, Q. H.; Yang, C. C.; Lin, C. H.; Jiang, H. L. Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew. Chem., Int. Ed. 2019, 58, 3511–3515.

    CAS  Google Scholar 

  94. Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X. et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2018, 57, 1944–1948.

    CAS  Google Scholar 

  95. Jiao, L.; Wan, G.; Zhang, R.; Zhou, H.; Yu, S. H.; Jiang, H. L. From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: Efficient oxygen reduction in both alkaline and acidic media. Angew. Chem., Int. Ed. 2018, 57, 8525–8529.

    CAS  Google Scholar 

  96. Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937–6941.

    CAS  Google Scholar 

  97. Jones, J.; **. Science 2016, 353, 150–154.

    CAS  Google Scholar 

  98. Yang, J.; Qiu, Z. Y.; Zhao, C. M.; Wei, W. C.; Chen, W. X.; Li, Z. J.; Qu, Y. T.; Dong, J. C.; Luo, J.; Li, Z. Y. et al. In situ thermal atomization to convert supported nickel nanoparticles into surface-bound nickel single-atom catalysts. Angew. Chem., Int. Ed. 2018, 57, 14095–14100.

    CAS  Google Scholar 

  99. Hou, C. C.; Zou, L. L.; Wang, Y.; Xu, Q. MOF-mediated fabrication of a porous 3D superstructure of carbon nanosheets decorated with ultrafine cobalt phosphide nanoparticles for efficient electrocatalysis and zinc-air batteries. Angew. Chem., Int. Ed. 2020, 59, 21360–21366.

    CAS  Google Scholar 

  100. Fan, L. L.; Liu, P. F.; Yan, X. C.; Gu, L.; Yang, Z. Z.; Yang, H. G.; Qiu, S. L.; Yao, X. D. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat. Commun. 2016, 7, 10667.

    CAS  Google Scholar 

  101. Yan, C. C.; Li, H. B.; Ye, Y. F.; Wu, H. H.; Cai, F.; Si, R.; **ao, J. P.; Miao, S.; **e, S. H.; Yang, F. et al. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ. Sci. 2018, 11, 1204–1210.

    CAS  Google Scholar 

  102. Wang, X.; Chen, W. X.; Zhang, L.; Yao, T.; Liu, W.; Lin, Y.; Ju, H. X.; Dong, J. C.; Zheng, L. R.; Yan, W. S. et al. Uncoordinated amine groups of metal-organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J. Am. Chem. Soc. 2017, 139, 9419–9422.

    CAS  Google Scholar 

  103. Zou, L. L.; Wei, Y. S.; Hou, C. C.; Li, C. X.; Xu, Q. Single-atom catalysts derived from metal-organic frameworks for electrochemical applications. Small 2021, 17, 2004809.

    CAS  Google Scholar 

  104. Qu, Y. T.; Li, Z. J.; Chen, W. X.; Lin, Y.; Yuan, T. W.; Yang, Z. K.; Zhao, C. M.; Wang, J.; Zhao, C.; Wang, X. et al. Direct transformation of bulk copper into copper single sites via emitting and trap** of atoms. Nat. Catal. 2018, 1, 781–786.

    CAS  Google Scholar 

  105. Zhang, E. H.; Wang, T.; Yu, K.; Liu, J.; Chen, W. X.; Li, A.; Rong, H. P.; Lin, R.; Ji, S. F.; Zheng, X. S. et al. Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 2019, 141, 16569–16573.

    CAS  Google Scholar 

  106. Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q. H.; Cheong, W. C.; Wang, Y.; Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.

    CAS  Google Scholar 

  107. Jiang, R.; Li, L.; Sheng, T.; Hu, G. F.; Chen, Y. G.; Wang, L. Y. Edge-site engineering of atomically dispersed Fe−N4 by selective C−N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 2018, 140, 11594–11598.

    CAS  Google Scholar 

  108. Zhou, D. N.; Li, X. Y.; Shang, H. S.; Qin, F. J.; Chen, W. X. Atomic regulation of metal-organic framework derived carbon-based single-atom catalysts for the electrochemical CO2 reduction reaction. J. Mater. Chem. A 2021, 9, 23382–23418.

    CAS  Google Scholar 

  109. Li, J.X., Xu, H.M., Huang, Z.J., Hong, Q.Y, Qiu, Y. X., Yan, N. Q., Qu, Z. Strengthen the affinity of element mercury on the carbon-based material by adjusting the coordination environment of single-site manganese. Environ. Sci. Technol. 2021, 55, 14126–14135.

    CAS  Google Scholar 

  110. Xu, M. Q.; Li, A. W.; Gao, M.; Zhou, W. Single-atom electron microscopy for energy-related nanomaterials. J. Mater. Chem. A 2020, 8, 16142–16165.

    CAS  Google Scholar 

  111. Zhang, H. G.; Hwang, S.; Wang, M. Y.; Feng, Z. X.; Karakalos, S.; Luo, L. L.; Qiao, Z.; **e, X. H.; Wang, C. M.; Su, D. et al. Single atomic iron catalysts for oxygen reduction in acidic media: Particle size control and thermal activation. J. Am. Chem. Soc. 2017, 139, 14143–14149.

    CAS  Google Scholar 

  112. Bressler, C.; Chergui, M. Ultrafast X-ray absorption spectroscopy. Chem. Rev. 2004, 104, 1781–1812.

    CAS  Google Scholar 

  113. Wang, B. Q.; Cheng, C.; **, M. M.; He, J.; Zhang, H.; Ren, W.; Li, J.; Wang, D. S.; Li, Y. D. A site distance effect induced by reactant molecule matchup in single-atom catalysts for Fenton-like reactions. Angew. Chem., Int. Ed. 2022, 61, e202207268.

    CAS  Google Scholar 

  114. **ong, Y.; Li, H. C.; Liu, C. W.; Zheng, L. R.; Liu, C.; Wang, J. O.; Liu, S. J.; Han, Y. H.; Gu, L.; Qian, J. S. et al. Single-atom Fe catalysts for Fenton-like reactions: Roles of different N species. Adv. Mater. 2022, 34, 2110653.

    CAS  Google Scholar 

  115. Li, X. N.; Ao, Z. M.; Liu, J. Y.; Sun, H. Q.; Rykov, A. I.; Wang, J. H. Topotactic transformation of metal-organic frameworks to graphene-encapsulated transition-metal nitrides as efficient Fenton-like catalysts. ACS Nano 2016, 10, 11532–11540.

    CAS  Google Scholar 

  116. Zandi, O.; Hamann, T. W. Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy. Nat. Chem. 2016, 8, 778–783.

    CAS  Google Scholar 

  117. Chen, T.; Wu, G. P.; Feng, Z. C.; Hu, G. S.; Su, W. G.; Ying, P. L.; Li, C. In situ FT-IR study of photocatalytic decomposition of formic acid to hydrogen on Pt/TiO2 catalyst. Chin. J. Catal. 2008, 29, 105–107.

    Google Scholar 

  118. Pei, J. J.; Wang, T.; Sui, R.; Zhang, X. J.; Zhou, D. N.; Qin, F. J.; Zhao, X.; Liu, Q. H.; Yan, W. S.; Dong, J. C. et al. N-bridged Co−N−Ni: New bimetallic sites for promoting electrochemical CO2 reduction. Energy Environ. Sci. 2021, 14, 3019–3028.

    CAS  Google Scholar 

  119. Qin, X., Cao, P.K., Quan, X., Zhao, K., Chen, S., Yu, H.T., Su, Y. Highly efficient hydroxyl radicals production boosted by the atomically dispersed Fe and Co sites for heterogeneous electro-fenton oxidation. Environ. Sci. Technol.. 2023, 57, 2907–2917.

    CAS  Google Scholar 

  120. Kwak, J. H.; Hu, J. Z.; Mei, D. C.; Yi, C. W.; Kim, D. H.; Peden, C. H. F.; Allard, L. F.; Szanyi, J. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3. Science 2009, 325, 1670–1673.

    CAS  Google Scholar 

  121. Corma, A.; Salnikov, O. G.; Barskiy, D. A.; Kovtunov, K. V.; Koptyug, I. V. Single-atom gold catalysis in the context of developments in parahydrogen-induced polarization. Chem. -Eur. J. 2015, 21, 7012–7015.

    CAS  Google Scholar 

  122. Liu, D.; Gu, W. Y.; Zhou, L.; Wang, L. Z.; Zhang, J. L.; Liu, Y. D.; Lei, J. Y. Recent advances in MOF-derived carbon-based nanomaterials for environmental applications in adsorption and catalytic degradation. Chem. Eng. J. 2022, 427, 131503.

    CAS  Google Scholar 

  123. Cao, X. H.; Zheng, B.; Rui, X. H.; Shi, W. H.; Yan, Q. Y.; Zhang, H. Metal oxide-coated three-dimensional graphene prepared by the use of metal-organic frameworks as precursors. Angew. Chem., Int. Ed. 2014, 53, 1404–1409.

    CAS  Google Scholar 

  124. Chen, H. R.; Shen, K.; Chen, J. Y.; Chen, X. D.; Li, Y. W. Hollow-ZIF-templated formation of a ZnO@C−N−Co core-shell nanostructure for highly efficient pollutant photodegradation. J. Mater. Chem. A 2017, 5, 9937–9945.

    CAS  Google Scholar 

  125. Chen, Y. Z.; Wang, C. M.; Wu, Z. Y.; **ong, Y. J.; Xu, Q.; Yu, S. H.; Jiang, H. L. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 2015, 27, 5010–5016.

    CAS  Google Scholar 

  126. Huang, P. F.; Lei, J. W.; Sun, Z. R.; Hu, X. Fabrication of MOF-derivated CuOx−C electrode for electrochemical degradation of ceftazidime from aqueous solution. Chemosphere 2021, 268, 129157.

    CAS  Google Scholar 

  127. Singh, B.; Gawande, M. B.; Kute, A. D.; Varma, R. S.; Fornasiero, P.; McNeice, P.; Jagadeesh, R. V.; Beller, M.; Zbořil, R. Single-atom (iron-based) catalysts: Synthesis and applications. Chem. Rev. 2021, 121, 13620–13697.

    CAS  Google Scholar 

  128. Su, L. N.; Wang, P. F.; Ma, X. L.; Wang, J. H.; Zhan, S. H. Regulating local electron density of Iron single sites by introducing nitrogen vacancies for efficient photo-Fenton process. Angew. Chem., Int. Ed. 2021, 60, 21261–21266.

    CAS  Google Scholar 

  129. Miao, J.; Zhu, Y.; Lang, J. Y.; Zhang, J. Z.; Cheng, S. X.; Zhou, B. X.; Zhang, L. Z.; Alvarez, P. J. J.; Long, M. C. Spin-state-dependent peroxymonosulfate activation of single-atom M−N moieties via a radical-free pathway. ACS Catal. 2021, 11, 9569–9577.

    CAS  Google Scholar 

  130. Wang, J. Y.; Xu, M.; Liang, X.; Zhang, Y.; Yang, D. D.; Pan, L.; Fang, W. Y.; Zhu, C. G.; Wang, F. W. Development of a novel 2D Ni-MOF derived NiO@C nanosheet arrays modified Ti/TiO2NTs/PbO2 electrode for efficient electrochemical degradation of salicylic acid wastewater. Sep. Purif. Technol. 2021, 263, 118368.

    CAS  Google Scholar 

  131. Tang, J. T.; Wang, J. L. MOF-derived three-dimensional flower-like FeCu@C composite as an efficient Fenton-like catalyst for sulfamethazine degradation. Chem. Eng. J. 2019, 375, 122007.

    CAS  Google Scholar 

  132. Chen, D. Z.; Chen, S. S.; Jiang, Y. J.; **e, S. S.; Quan, H. Y.; Hua, L.; Luo, X. B.; Guo, L. Heterogeneous Fenton-like catalysis of Fe-MOF derived magnetic carbon nanocomposites for degradation of 4-nitrophenol. RSC Adv. 2017, 7, 49024–49030.

    CAS  Google Scholar 

  133. Yang, S. J.; Qiu, X. J.; **, P. K.; Dzakpasu, M.; Wang, X. C.; Zhang, Q. H.; Zhang, L.; Yang, L.; Ding, D. H.; Wang, W. D. et al. MOF-templated synthesis of CoFe2O4 nanocrystals and its coupling with peroxymonosulfate for degradation of bisphenol A. Chem. Eng. J. 2018, 353, 329–339.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21971017 and 21906007), the National Key Research and Development Program of China (No. 2020YFB1506300), and the Bei**g Institute of Technology Research Fund Program. We gratefully acknowledge the Analysis and Testing Center of the Bei**g Institute of Technology and the Bei**g Institute of Technology Research Fund Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, B. Atomic regulations of single atom from metal-organic framework derived carbon for advanced water treatment. Nano Res. 16, 10326–10341 (2023). https://doi.org/10.1007/s12274-023-5616-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5616-z

Keywords

Navigation