Log in

Lateral quantum confinement regulates charge carrier transfer and biexciton interaction in CdSe/CdSeS core/crown nanoplatelets

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Charge carrier dynamics essentially determines the performance of various optoelectronic applications of colloidal semiconductor nanocrystals. Among them, two-dimensional nanoplatelets provide new adjustment freedom for their unique core/crown heterostructures. Herein, we demonstrate that by fine-tuning the core size and the lateral quantum confinement, the charge carrier transfer rate from the crown to the core can be varied by one order of magnitude in CdSe/CdSeS core/alloy-crown nanoplatelets. In addition, the transfer can be affected by a carrier blocking mechanism, i.e., the filled carriers hinder further possible transfer. Furthermore, we found that the biexciton interaction is oppositely affected by quantum confinement and electron delocalization, resulting in a non-monotonic variation of the biexciton binding energy with the emission wavelength. This work provides new observations and insights into the charge carrier transfer dynamics and exciton interactions in colloidal nanoplatelets and will promote their further applications in lasing, display, sensing, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.; Dubertret, B.; Efros, A. L. Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 2011, 10, 936–941.

    CAS  Google Scholar 

  2. Kormilina, T. K.; Cherevkov, S. A.; Fedorov, A. V.; Baranov, A. V. Cadmium chalcogenide nano-heteroplatelets: Creating advanced nanostructured materials by shell growth, substitution, and attachment. Small 2017, 13, 1702300.

    Google Scholar 

  3. Yu, J. H.; Chen, R. Optical properties and applications of two-dimensional CdSe nanoplatelets. InfoMat 2020, 2, 905–927.

    CAS  Google Scholar 

  4. Pelton, M.; Ithurria, S.; Schaller, R. D.; Dolzhnikov, D. S.; Talapin, D. V. Carrier cooling in colloidal quantum wells. Nano Lett. 2012, 12, 6158–6163.

    CAS  Google Scholar 

  5. Achtstein, A. W.; Schliwa, A.; Prudnikau, A.; Hardzei, M.; Artemyev, M. V.; Thomsen, C.; Woggon, U. Electronic structure and exciton-phonon interaction in two-dimensional colloidal CdSe nanosheets. Nano Lett. 2012, 12, 3151–3157.

    CAS  Google Scholar 

  6. Tessier, M. D.; Javaux, C.; Maksimovic, I.; Loriette, V.; Dubertret, B. Spectroscopy of single CdSe nanoplatelets. ACS Nano 2012, 6, 6751–6758.

    CAS  Google Scholar 

  7. Scott, R.; Achtstein, A. W.; Prudnikau, A. V.; Antanovich, A.; Siebbeles, L. D. A.; Artemyev, M.; Woggon, U. Time-resolved stark spectroscopy in CdSe nanoplatelets: Exciton binding energy, polarizability, and field-dependent radiative rates. Nano Lett. 2016, 16, 6576–6583.

    CAS  Google Scholar 

  8. Shornikova, E. V.; Yakovlev, D. R.; Gippius, N. A.; Qiang, G.; Dubertret, B.; Khan, A. H.; Di Giacomo, A.; Moreels, I.; Bayer, M. Exciton binding energy in CdSe nanoplatelets measured by one- and two-photon absorption. Nano Lett. 2021, 21, 10525–10531.

    CAS  Google Scholar 

  9. Ayari, S.; Quick, M. T.; Owschimikow, N.; Christodoulou, S.; Bertrand, G. H. V.; Artemyev, M.; Moreels, I.; Woggon, U.; Jaziri, S.; Achtstein, A. W. Tuning trion binding energy and oscillator strength in a laterally finite 2D system: CdSe nanoplatelets as a model system for trion properties. Nanoscale 2020, 12, 14448–14458.

    CAS  Google Scholar 

  10. Scott, R.; Heckmann, J.; Prudnikau, A. V.; Antanovich, A.; Mikhailov, A.; Owschimikow, N.; Artemyev, M.; Climente, J. I.; Woggon, U.; Grosse, N. B. et al. Directed emission of CdSe nanoplatelets originating from strongly anisotropic 2D electronic structure. Nat. Nanotechnol. 2017, 12, 1155–1160.

    CAS  Google Scholar 

  11. Bai, P.; Hu, A.; Liu, Y.; **, Y. Z.; Gao, Y. N. Printing and in situ assembly of CdSe/CdS nanoplatelets as uniform films with unity in-plane transition dipole moment. J. Phys. Chem. Lett. 2020, 11, 4524–4529.

    CAS  Google Scholar 

  12. Naeem, A.; Masia, F.; Christodoulou, S.; Moreels, I.; Borri, P.; Langbein, W. Giant exciton oscillator strength and radiatively limited dephasing in two-dimensional platelets. Phys. Rev. B 2015, 91, 121302.

    Google Scholar 

  13. Guzelturk, B.; Pelton, M.; Olutas, M.; Demir, H. V. Giant modal gain coefficients in colloidal II–VI nanoplatelets. Nano Lett. 2019, 19, 277–282.

    CAS  Google Scholar 

  14. Grim, J. Q.; Christodoulou, S.; Di Stasio, F.; Krahne, R.; Cingolani, R.; Manna, L.; Moreels, I. Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells. Nat. Nanotechnol. 2014, 9, 891–895.

    CAS  Google Scholar 

  15. Duan, R.; Zhang, Z. T.; **ao, L.; Zhao, X. X.; Thung, Y. T.; Ding, L.; Liu, Z.; Yang, J.; Ta, V. D.; Sun, H. D. Ultralow-threshold and high-quality whispering-gallery-mode lasing from colloidal core/hybrid-shell quantum wells. Adv. Mater. 2022, 34, 2108884.

    CAS  Google Scholar 

  16. Liu, B. Q.; Altintas, Y.; Wang, L.; Shendre, S.; Sharma, M.; Sun, H. D.; Mutlugun, E.; Demir, H. V. Record high external quantum efficiency of 19.2% achieved in light-emitting diodes of colloidal quantum wells enabled by hot-injection shell growth. Adv. Mater. 2020, 32, 1905824.

    CAS  Google Scholar 

  17. Dutta, A.; Medda, A.; Bera, R.; Sarkar, K.; Sain, S.; Kumar, P.; Patra, A. Hybrid nanostructures of 2D CdSe nanoplatelets for high-performance photodetector using charge transfer process. ACS Appl. Nano Mater. 2020, 3, 4717–4727.

    CAS  Google Scholar 

  18. Van Embden, J.; Jasieniak, J.; Mulvaney, P. Map** the optical properties of CdSe/CdS heterostructure nanocrystals: The effects of core size and shell thickness. J. Am. Chem. Soc. 2009, 131, 14299–14309.

    CAS  Google Scholar 

  19. Reiss, P.; Protière, M.; Li, L. Core/shell semiconductor nanocrystals. Small 2000, 5, 154–168.

    Google Scholar 

  20. **ng, G. C.; Liao, Y. L.; Wu, X. Y.; Chakrabortty, S.; Liu, X. F.; Yeow, E. K. L.; Chan, Y.; Sum, T. C. Ultralow-threshold two-photon pumped amplified spontaneous emission and lasing from seeded CdSe/CdS nanorod heterostructures. ACS Nano 2012, 6, 10835–10844.

    CAS  Google Scholar 

  21. Ning, J. J.; **ong, Y.; Kershaw, S. V.; Rogach, A. L. Phase-dependent shell growth and optical properties of ZnSe/ZnS core/shell nanorods. Chem. Mater. 2021, 33, 3413–3427.

    CAS  Google Scholar 

  22. Vaneski, A.; Susha, A. S.; Rodríguez-Fernández, J.; Berr, M.; Jäckel, F.; Feldmann, J.; Rogach, A. L. Hybrid colloidal heterostructures of anisotropic semiconductor nanocrystals decorated with noble metals: Synthesis and function. Adv. Funct. Mater. 2011, 21, 1547–1556.

    CAS  Google Scholar 

  23. Portniagin, A. S.; Ning, J. J.; Wang, S. X.; Li, Z.; Sergeev, A. A.; Kershaw, S. V.; Zhong, X. Y.; Rogach, A. L. Monodisperse CuInS2/CdS and CuInZnS2/CdS core—shell nanorods with a strong near-infrared emission. Adv. Opt. Mater. 2022, 10, 2102590.

    CAS  Google Scholar 

  24. Van Der Stam, W.; Grimaldi, G.; Geuchies, J. J.; Gudjonsdottir, S.; Van Uffelen, P. T.; Van Overeem, M.; Brynjarsson, B.; Kirkwood, N.; Houtepen, A. J. Electrochemical modulation of the photophysics of surface-localized trap states in core/shell/(shell) quantum dot films. Chem. Mater. 2010, 31, 8484–8493.

    Google Scholar 

  25. Liu, X.; Pei, J. J.; Hu, Z. H.; Zhao, W. J.; Liu, S.; Amara, M. R.; Watanabe, K.; Taniguchi, T.; Zhang, H.; **ong, Q. H. Manipulating charge and energy transfer between 2D atomic layers via heterostructure engineering. Nano Lett. 2020, 20, 5359–5366.

    CAS  Google Scholar 

  26. Kang, K.; Lee, K. H.; Han, Y. M.; Gao, H.; **e, S. E.; Muller, D. A.; Park, J. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 2017, 550, 229–233.

    Google Scholar 

  27. Yang, H. H.; Fan, W. G.; Vaneski, A.; Susha, A. S.; Teoh, W. Y.; Rogach, A. L. Heterojunction engineering of CdTe and CdSe quantum dots on TiO2 nanotube arrays: Intricate effects of size-dependency and interfacial contact on photoconversion efficiencies. Adv. Funct. Mater. 2012, 22, 2821–2829.

    CAS  Google Scholar 

  28. Padgaonkar, S.; Olding, J. N.; Lauhon, L. J.; Hersam, M. C.; Weiss, E. A. Emergent optoelectronic properties of mixed-dimensional heterojunctions. Acc. Chem. Res. 2020, 53, 763–772.

    CAS  Google Scholar 

  29. Mahler, B.; Nadal, B.; Bouet, C.; Patriarche, G.; Dubertret, B. Core/shell colloidal semiconductor nanoplatelets. J. Am. Chem. Soc. 2012, 134, 18591–18598.

    CAS  Google Scholar 

  30. Prudnikau, A.; Chuvilin, A.; Artemyev, M. CdSe-CdS nanoheteroplatelets with efficient photoexcitation of central CdSe region through epitaxially grown CdS wings. J. Am. Chem. Soc. 2013, 135, 14476–14479.

    CAS  Google Scholar 

  31. Tessier, M. D.; Spinicelli, P.; Dupont, D.; Patriarche, G.; Ithurria, S.; Dubertret, B. Efficient exciton concentrators built from colloidal core/crown CdSe/CdS semiconductor nanoplatelets. Nano Lett. 2014, 14, 207–213.

    CAS  Google Scholar 

  32. Scott, R.; Prudnikau, A. V.; Antanovich, A.; Christodoulou, S.; Riedl, T.; Bertrand, G. H. V.; Owschimikow, N.; Lindner, J. K. N.; Hens, Z.; Moreels, I. et al. A comparative study demonstrates strong size tunability of carrier-phonon coupling in CdSe-based 2D and 0D nanocrystals. Nanoscale 2019, 11, 3958–3967.

    CAS  Google Scholar 

  33. Hu, A.; Bai, P.; Zhu, Y. K.; Song, Z. G.; Wang, R. T.; Zheng, J. C.; Yao, Y. G.; Zhang, Q.; Ding, Z. P.; Gao, P. et al. Green CdSe/CdSeS core/alloyed-crown nanoplatelets achieve unity photoluminescence quantum yield over a broad emission range. Adv. Opt. Mater. 2022, 10, 2200469.

    CAS  Google Scholar 

  34. Llusar, J.; Climente, J. I. Shell filling and paramagnetism in few-electron colloidal nanoplatelets. Phys. Rev. Lett. 2022, 129, 066404.

    CAS  Google Scholar 

  35. Li, Q. Y.; Wu, K. F.; Chen, J. Q.; Chen, Z. Y.; McBride, J. R.; Lian, T. Q. Size-independent exciton localization efficiency in colloidal CdSe/CdS core/crown nanosheet Type-I heterostructures. ACS Nano 2016, 10, 3843–3851.

    CAS  Google Scholar 

  36. Li, Q. Y.; Lian, T. Q. Area- and thickness-dependent biexciton auger recombination in colloidal CdSe nanoplatelets: Breaking the “universal volume scaling law”. Nano Lett. 2017, 17, 3152–3158.

    CAS  Google Scholar 

  37. Pelton, M.; Andrews, J. J.; Fedin, I.; Talapin, D. V.; Leng, H. X.; O’ Leary, S. K. Nonmonotonic dependence of auger recombination rate on shell thickness for CdSe/CdS core/shell nanoplatelets. Nano Lett. 2017, 17, 6900–6906.

    CAS  Google Scholar 

  38. Kunneman, L. T.; Tessier, M. D.; Heuclin, H.; Dubertret, B.; Aulin, Y. V.; Grozema, F. C.; Schins, J. M.; Siebbeles, L. D. A. Bimolecular auger recombination of electron-hole pairs in two-dimensional CdSe and CdSe/CdZnS core/shell nanoplatelets. J. Phys. Chem. Lett. 2013, 4, 3574–3578.

    CAS  Google Scholar 

  39. Houtepen, A. J.; Hens, Z.; Owen, J. S.; Infante, I. On the origin of surface traps in colloidal II–VI semiconductor nanocrystals. Chem. Mater. 2017, 29, 752–761.

    CAS  Google Scholar 

  40. Kunneman, L. T.; Schins, J. M.; Pedetti, S.; Heuclin, H.; Grozema, F. C.; Houtepen, A. J.; Dubertret, B.; Siebbeles, L. D. A. Nature and decay pathways of photoexcited states in CdSe and CdSe/CdS nanoplatelets. Nano Lett. 2014, 14, 7039–7045.

    CAS  Google Scholar 

  41. Morgan, D. P.; Kelley, D. F. Exciton localization and radiative lifetimes in CdSe nanoplatelets. J. Phys. Chem. C 2019, 123, 18665–18675.

    CAS  Google Scholar 

  42. Bertrand, G. H. V.; Polovitsyn, A.; Christodoulou, S.; Khan, A. H.; Moreels, I. Shape control of zincblende CdSe nanoplatelets. Chem. Commun. 2016, 52, 11975–11978.

    CAS  Google Scholar 

  43. Marcus, R. A. On the theory of electron-transfer reactions. Vi. Unified treatment for homogeneous and electrode reactions. J. Chem. Phys. 1965, 43, 679–701.

    CAS  Google Scholar 

  44. Robel, I.; Kuno, M.; Kamat, P. V. Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J. Am. Chem. Soc. 2007, 129, 4136–4137.

    CAS  Google Scholar 

  45. Wang, J. H.; Ding, T.; Gao, K. M.; Wang, L. F.; Zhou, P. W.; Wu, K. F. Marcus inverted region of charge transfer from low-dimensional semiconductor materials. Nat. Commun. 2021, 12, 6333.

    CAS  Google Scholar 

  46. Olshansky, J. H.; Ding, T. X.; Lee, Y. V.; Leone, S. R.; Alivisatos, A. P. Hole transfer from photoexcited quantum dots: The relationship between driving force and rate. J. Am. Chem. Soc. 2015, 137, 15567–15575.

    CAS  Google Scholar 

  47. Zhu, H. M.; Yang, Y.; Hyeon-Deuk, K.; Califano, M.; Song, N. H.; Wang, Y. W.; Zhang, W. Q.; Prezhdo, O. V.; Lian, T. Q. Auger-assisted electron transfer from photoexcited semiconductor quantum dots. Nano Lett. 2014, 14, 1263–1269.

    CAS  Google Scholar 

  48. Pandey, A.; Guyot-Sionnest, P. Intraband spectroscopy and band offsets of colloidal II–VI core/shell structures. J. Chem. Phys. 2007, 127, 104710.

    Google Scholar 

  49. Morgan, D. P.; Maddux, C. J. A.; Kelley, D. F. Transient absorption spectroscopy of CdSe nanoplatelets. J. Phys. Chem. C 2018, 122, 23772–23779.

    CAS  Google Scholar 

  50. Wu, K. F.; Li, Q. Y.; Jia, Y. Y.; McBride, J. R.; **e, Z. X.; Lian, T. Q. Efficient and ultrafast formation of long-lived charge-transfer exciton state in atomically thin cadmium selenide/cadmium telluride type-II heteronanosheets. ACS Nano 2015, 9, 961–968.

    CAS  Google Scholar 

  51. Mauser, C.; Da Como, E.; Baldauf, J.; Rogach, A. L.; Huang, J.; Talapin, D. V.; Feldmann, J. Spatio-temporal dynamics of coupled electrons and holes in nanosize CdSe-CdS semiconductor tetrapods. Phys. Rev. B 2010, 82, 081306.

    Google Scholar 

  52. Wang, Y. F.; Wang, H. Y.; Li, Z. S.; Zhao, J.; Wang, L.; Chen, Q. D.; Wang, W. Q.; Sun, H. B. Electron extraction dynamics in CdSe and CdSe/CdS/ZnS quantum dots adsorbed with methyl viologen. J. Phys. Chem. C 2014, 118, 17240–17246.

    CAS  Google Scholar 

  53. Zhang, L.; Yang, H. Y.; Yu, B. Y.; Tang, Y.; Zhang, C. F.; Wang, X. Y.; **ao, M.; Cui, Y. P.; Zhang, J. Y. Low-threshold amplified spontaneous emission and lasing from thick-shell CdSe/CdS core/shell nanoplatelets enabled by high-temperature growth. Adv. Opt. Mater. 2020, 8, 1901615.

    CAS  Google Scholar 

  54. Kumar, P.; Ray, R.; Adel, P.; Luebkemann, F.; Dorfs, D.; Pal, S. K. Role of ZnS segment on charge carrier dynamics and photoluminescence property of CdSe@CdS/ZnS quantum rods. J. Phys. Chem. C 2018, 122, 6379–6387.

    CAS  Google Scholar 

  55. Yuan, M. J.; Quan, L. N.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y. B.; Beauregard, E. M.; Kanjanaboos, P. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 2016, 11, 872–877.

    CAS  Google Scholar 

  56. **ng, G. C.; Wu, B.; Wu, X. Y.; Li, M. J.; Du, B.; Wei, Q.; Guo, J.; Yeow, E. K. L.; Sum, T. C.; Huang, W. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat. Commun. 2017, 8, 14558.

    CAS  Google Scholar 

  57. Guzelturk, B.; Kelestemur, Y.; Olutas, M.; Delikanli, S.; Demir, H. V. Amplified spontaneous emission and lasing in colloidal nanoplatelets. ACS Nano 2014, 8, 6599–6605.

    CAS  Google Scholar 

  58. Schill, A. W.; Gaddis, C. S.; Qian, W.; El-Sayed, M. A.; Cai, Y.; Milam, V. T.; Sandhage, K. Ultrafast electronic relaxation and charge-carrier localization in CdS/CdSe/CdS quantum-dot quantum-well heterostructures. Nano Lett. 2006, 6, 1940–1949.

    CAS  Google Scholar 

  59. Li, Q. Y.; Liu, Q. L.; Schaller, R. D.; Lian, T. Q. Reducing the optical gain threshold in two-dimensional CdSe nanoplatelets by the giant oscillator strength transition effect. J. Phys. Chem. Lett. 2019, 10, 1624–1632.

    CAS  Google Scholar 

  60. Birkedal, D.; Singh, J.; Lyssenko, V. G.; Erland, J.; Hvam, J. M. Binding of quasi-two-dimensional biexcitons. Phys. Rev. Lett. 1996, 76, 672–675.

    CAS  Google Scholar 

  61. Woggon, U.; Hild, K.; Gindele, F.; Langbein, W.; Hetterich, M.; Grün, M.; Klingshirn, C. Huge binding energy of localized biexcitons in CdS/ZnS quantum structures. Phys. Rev. B 2000, 61, 12632–12635.

    CAS  Google Scholar 

  62. Chia, C. H.; Makino, T.; Tamura, K.; Segawa, Y.; Kawasaki, M.; Ohtomo, A.; Koinuma, H. Confinement-enhanced biexciton binding energy in ZnO/ZnMgO multiple quantum wells. Appl. Phys. Lett. 2003, 82, 1848–1850.

    CAS  Google Scholar 

  63. Macias-Pinilla, D. F.; Planelles, J.; Climente, J. I. Biexcitons in CdSe nanoplatelets: Geometry, binding energy and radiative rate. Nanoscale 2022, 14, 8493–8500.

    CAS  Google Scholar 

  64. Kezerashvili, R. Y.; Machavariani, Z. S.; Beradze, B.; Tchelidze, T. Trions and biexcitons in ZnO/ZnMgO, CdSe/ZnS and CdSe/CdS core/shell nanowires. Phys. E Low-Dimens. Syst. Nanostruct. 2019, 109, 228–241.

    CAS  Google Scholar 

  65. Singh, J.; Birkedal, D.; Lyssenko, V. G.; Hvam, J. M. Binding energy of two-dimensional biexcitons. Phys. Rev. B 1996, 53, 15909–15913.

    CAS  Google Scholar 

  66. Mathieu, H.; Lefebvre, P.; Christol, P. Simple analytical method for calculating exciton binding energies in semiconductor quantum wells. Phys. Rev. B 1992, 46, 4092–4101.

    CAS  Google Scholar 

  67. Rajadell, F.; Climente, J. I.; Planelles, J. Excitons in core-only, core—shell and core-crown CdSe nanoplatelets: Interplay between in-plane electron-hole correlation, spatial confinement, and dielectric confinement. Phys. Rev. B 2017, 96, 035307.

    Google Scholar 

  68. Wu, K. F.; Rodríguez-Córdoba, W.; Lian, T. Q. Exciton localization and dissociation dynamics in CdS and CdS-Pt quantum confined nanorods: Effect of nonuniform rod diameters. J. Phys. Chem. B 2014, 118, 14062–14069.

    CAS  Google Scholar 

  69. Lupo, M. G.; Della Sala, F.; Carbone, L.; Zavelani-Rossi, M.; Fiore, A.; Lüer, L.; Polli, D.; Cingolani, R.; Manna, L.; Lanzani, G. Ultrafast electron—hole dynamics in core/shell CdSe/CdS dot/rod nanocrystals. Nano Lett. 2008, 8, 4582–4587.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61875002), the National Key R&D Program of China (No. 2018YFA0306302), the Bei**g Natural Science Foundation (No. Z190005), and the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices (No. KF202208). The author acknowledges the support of the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000), and the National Natural Science Foundation of China (Nos. 11874130 and 22073022), and the support from the DNL Cooperation Fund, CAS (No. DNL202016) of Dalian National Laboratory for Clean Energy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **nfeng Liu or Yunan Gao.

Electronic Supplementary Material

12274_2023_5542_MOESM1_ESM.pdf

Lateral quantum confinement regulates charge carrier transfer and biexciton interaction in CdSe/CdSeS core/crown nanoplatelets

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Bao, X., Zhu, Y. et al. Lateral quantum confinement regulates charge carrier transfer and biexciton interaction in CdSe/CdSeS core/crown nanoplatelets. Nano Res. 16, 10420–10428 (2023). https://doi.org/10.1007/s12274-023-5542-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5542-0

Keywords

Navigation