Log in

Isolated Cu-Sn diatomic sites for enhanced electroreduction of CO2 to CO

  • Communication
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrochemical CO2 reduction reaction (CO2RR) to high-value product, CO, not only provides a key feedstock for the well-established Fischer—Tropsch process but also mitigates the greenhouse effect. However, it suffers from sluggish reaction kinetics, competitive hydrogen evolution reaction, and low selectivity. Herein, we report non-precious Cu-Sn diatomic sites anchored on nitrogen-doped porous carbon (CuSn/NPC) as an efficient catalyst for CO2RR to CO. The catalyst exhibits outstanding selectivity with CO Faradaic efficiency (FE) up to 99.1%, much higher than those of individual Cu (66.2%) and Sn (51.3%) single-atom catalysts. Moreover, high stability is confirmed by consecutive 24 h electrolysis with high selectivity from CO2 to CO. Theoretical calculations reveal an obvious activation of CO2 with weakened C—O bonds and distorted CO2 configuration upon chemisorption on the CuSn/NPC catalyst. It is also suggested CuSn/NPC is more selective for the CO2RR with dominant CO production during the electrolysis, rather than the competing hydrogen evolution reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

    CAS  Google Scholar 

  2. Davis, S. J.; Caldeira, K.; Matthews, H. D. Future CO2 emissions and climate change from existing energy infrastructure. Science 2010, 329, 1330–1333.

    CAS  Google Scholar 

  3. Han, L. L.; Song, S. J.; Liu, M. J.; Yao, S. Y.; Liang, Z. X.; Cheng, H.; Ren, Z. H.; Liu, W.; Lin, R. Q.; Qi, G. C. et al. Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4. J. Am. Chem. Soc. 2020, 142, 12563–12567.

    CAS  Google Scholar 

  4. Kauffman, D. R.; Thakkar, J.; Siva, R.; Matranga, C.; Ohodnicki, P. R.; Zeng, C. J.; **, R. C. Efficient electrochemical CO2 conversion powered by renewable energy. ACS Appl. Mater. Interfaces 2015, 7, 15626–15632.

    CAS  Google Scholar 

  5. Rofer-DePoorter, C. K. A comprehensive mechanism for the Fischer—Tropsch synthesis. Chem. Rev. 1981, 81, 447–474.

    CAS  Google Scholar 

  6. Vennestrøm, P. N. R.; Osmundsen, C. M.; Christensen, C. H.; Taarning, E. Beyond petrochemicals: The renewable chemicals industry. Angew. Chem., Int. Ed. 2011, 50, 10502–10509.

    Google Scholar 

  7. Zhang, Y. Q.; Jacobs, G.; Sparks, D. E.; Dry, M. E.; Davis, B. H. CO and CO2 hydrogenation study on supported cobalt Fischer—Tropsch synthesis catalysts. Catal. Today 2022, 71, 411–418.

    Google Scholar 

  8. Buckley, A. K.; Lee, M.; Cheng, T.; Kazantsev, R. V.; Larson, D. M.; Goddard Iii, W. A.; Toste, F. D.; Toma, F. M. Electrocatalysis at organic-metal interfaces: Identification of structure—reactivity relationships for CO2 reduction at modified Cu surfaces. J. Am. Chem. Soc. 2019, 141, 7355–7364.

    CAS  Google Scholar 

  9. Liu, M.; Pang, Y. J.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J. X.; Zheng, X. L.; Dinh, C. T.; Fan, F. J.; Cao, C. H. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016, 537, 382–386.

    CAS  Google Scholar 

  10. Rosen, B. A.; Salehi-Kho**, A.; Thorson, M. R.; Zhu, W.; Whipple, D. T.; Kenis, P. J. A.; Masel, R. I. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 2011, 334, 643–644.

    CAS  Google Scholar 

  11. Jiao, Y.; Zheng, Y.; Chen, P.; Jaroniec, M.; Qiao, S. Z. Molecular scaffolding strategy with synergistic active centers to facilitate electrocatalytic CO2 reduction to hydrocarbon/alcohol. J. Am. Chem. Soc. 2017, 139, 18093–18100.

    CAS  Google Scholar 

  12. He, Q.; Lee, J. H.; Liu, D. B.; Liu, Y. M.; Lin, Z. X.; **e, Z. H.; Hwang, S.; Kattel, S.; Song, L.; Chen, J. G. Accelerating CO2 electroreduction to CO over Pd single-atom catalyst. Adv. Funct. Mater. 2020, 30, 2000407.

    CAS  Google Scholar 

  13. Li, Y. F.; Chen, C.; Cao, R.; Pan, Z. W.; He, H.; Zhou, K. B. Dualatom Ag2/graphene catalyst for efficient electroreduction of CO2 to CO. Appl. Catal. B:Environ. 2020, 268, 118747.

    CAS  Google Scholar 

  14. Li, J.; Chen, W. D.; Lin, R.; Huang, M. R.; Wang, M.; Chai, M. S.; Zhu, H. W. Thermally evaporated Ag-Au bimetallic catalysts for efficient electrochemical CO2 reduction. Part. Part. Syst. Charact. 2021, 38, 2100148.

    CAS  Google Scholar 

  15. Zhao, Y.; Wang, C. Y.; Wallace, G. G. Tin nanoparticles decorated copper oxide nanowires for selective electrochemical reduction of aqueous CO2 to CO. J. Mater. Chem. A 2016, 4, 10710–10718.

    CAS  Google Scholar 

  16. Yang, H.; Hu, Y. W.; Chen, J. J.; Balogun, M. S.; Fang, P. P.; Zhang, S. Q.; Chen, J.; Tong, Y. X. Intermediates adsorption engineering of CO2 electroreduction reaction in highly selective heterostructure Cu-based electrocatalysts for CO production. Adv. Energy Mater. 2019, 9, 1901396.

    Google Scholar 

  17. Sarfraz, S.; Garcia-Esparza, A. T.; Jedidi, A.; Cavallo, L.; Takanabe, K. Cu-Sn bimetallic catalyst for selective aqueous electroreduction of CO2 to CO. ACS Catal. 2016, 6, 2842–2851.

    CAS  Google Scholar 

  18. Jiang, X. X.; Wang, X. K.; Liu, Z. J.; Wang, Q. L.; **ao, X.; Pan, H. P.; Li, M.; Wang, J. W.; Shao, Y.; Peng, Z. Q. et al. A highly selective tin-copper bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to formate. Appl. Catal. B:Environ. 2019, 259, 118040.

    CAS  Google Scholar 

  19. Weng, Z.; Zhang, X.; Wu, Y. S.; Huo, S. J.; Jiang, J. B.; Liu, W.; He, G. J.; Liang, Y. Y.; Wang, H. L. Self-cleaning catalyst electrodes for stabilized CO2 reduction to hydrocarbons. Angew. Chem., Int. Ed. 2017, 56, 13135–13139.

    CAS  Google Scholar 

  20. Schreier, M.; Héroguel, F.; Steier, L.; Ahmad, S.; Luterbacher, J. S.; Mayer, M. T.; Luo, J. S.; Grätzel, M. Solar conversion of CO2 to CO using earth-abundant electrocatalysts prepared by atomic layer modification of CuO. Nat. Energy 2017, 2, 17087.

    CAS  Google Scholar 

  21. Jiao, J. Q.; Lin, R.; Liu, S. J.; Cheong, W. C.; Zhang, C.; Chen, Z.; Pan, Y.; Tang, J. G.; Wu, K. L.; Hung, S. F. et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 2019, 11, 222–228.

    CAS  Google Scholar 

  22. Reske, R.; Mistry, H.; Behafarid, F.; Roldan Cuenya, B.; Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 2014, 136, 6978–6986.

    CAS  Google Scholar 

  23. Ma, M.; Djanashvili, K.; Smith, W. A. Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angew. Chem., Int. Ed. 2016, 55, 6680–6684.

    CAS  Google Scholar 

  24. Watanabe, M.; Shibata, M.; Katoh, A.; Sakata, T.; Azuma, M. Design of alloy electrocatalysts for CO2 reduction: Improved energy efficiency, selectivity, and reaction rate for the CO2 electroreduction on Cu alloy electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1991, 305, 319–328.

    CAS  Google Scholar 

  25. Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. D. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 2014, 5, 4948.

    CAS  Google Scholar 

  26. Rasul, S.; Anjum, D. H.; Jedidi, A.; Minenkov, Y.; Cavallo, L.; Takanabe, K. A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. Angew. Chem., Int. Ed. 2015, 54, 2146–2150.

    CAS  Google Scholar 

  27. Zhuang, T. T.; Liang, Z. Q.; Seifitokaldani, A.; Li, Y.; De Luna, P.; Burdyny, T.; Che, F. L.; Meng, F.; Min, Y. M.; Quintero-Bermudez, R. et al. Steering post-C—C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 2018, 1, 421–428.

    CAS  Google Scholar 

  28. Manthiram, K.; Beberwyck, B. J.; Alivisatos, A. P. Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. J. Am. Chem. Soc. 2014, 136, 13319–13325.

    CAS  Google Scholar 

  29. Roberts, F. S.; Kuhl, K. P.; Nilsson, A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew. Chem., Int. Ed. 2015, 54, 5179–5182.

    CAS  Google Scholar 

  30. Verdaguer-Casadevall, A.; Li, C. W.; Johansson, T. P.; Scott, S. B.; McKeown, J. T.; Kumar, M.; Stephens, I. E. L.; Kanan, M. W.; Chorkendorff, I. Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J. Am. Chem. Soc. 2015, 137, 9808–9811.

    CAS  Google Scholar 

  31. Ren, W. H.; Tan, X.; Yang, W. F.; Jia, C.; Xu, S. M.; Wang, K. X.; Smith, S. C.; Zhao, C. Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew. Chem., Int. Ed. 2019, 58, 6972–6976.

    CAS  Google Scholar 

  32. Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J. Y.; Liu, J.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

    CAS  Google Scholar 

  33. Zhu, C. Z.; Fu, S. F.; Shi, Q. R.; Du, D.; Lin, Y. H. Single-atom electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 13944–13960.

    CAS  Google Scholar 

  34. Yang, X.; Tat, T.; Libanori, A.; Cheng, J.; Xuan, X. X.; Liu, N.; Yang, X.; Zhou, J. H.; Nashalian, A.; Chen, J. Single-atom catalysts with bimetallic centers for high-performance electrochemical CO2 reduction. Mater. Today 2021, 45, 54–61.

    CAS  Google Scholar 

  35. Gao, D. F.; Liu, T. F.; Wang, G. X.; Bao, X. H. Structure sensitivity in single-atom catalysis toward CO2 electroreduction. ACS Energy Lett. 2021, 6, 713–727.

    CAS  Google Scholar 

  36. Yun, R. R.; Zhan, F. Y.; Wang, X. J.; Zhang, B. B.; Sheng, T.; **n, Z. F.; Mao, J. J.; Liu, S. J.; Zheng, B. S. Design of binary Cu-Fe sites coordinated with nitrogen dispersed in the porous carbon for synergistic CO2 electroreduction. Small 2021, 17, 2006951.

    CAS  Google Scholar 

  37. Huo, S. J.; Weng, Z.; Wu, Z. S.; Zhong, Y. R.; Wu, Y. S.; Fang, J. H.; Wang, H. L. Coupled metal/oxide catalysts with tunable product selectivity for electrocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 2017, 9, 28519–28526.

    CAS  Google Scholar 

  38. Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.

    Google Scholar 

  39. Notario-Estévez, A.; Kozlov, S. M.; Viñes, F.; Illas, F. Electronic-structure-based material descriptors: (In) dependence on self-interaction and Hartree—Fock exchange. Chem. Commun. 2015, 51, 5602–5605.

    Google Scholar 

  40. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    CAS  Google Scholar 

  41. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    CAS  Google Scholar 

  42. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

    CAS  Google Scholar 

  43. Han, L. L.; Hou, M. C.; Ou, P. F.; Cheng, H.; Ren, Z. H.; Liang, Z. X.; Boscoboinik, J. A.; Hunt, A.; Waluyo, I.; Zhang, S. S. et al. Local modulation of single-atomic Mn sites for enhanced ambient ammonia electrosynthesis. ACS Catal. 2021, 11, 509–516.

    CAS  Google Scholar 

  44. Han, L. L.; Liu, X. J.; Chen, J. P.; Lin, R. Q.; Liu, H. X.; Lü, F.; Bak, S.; Liang, Z. X.; Zhao, S. Z.; Stavitski, E. et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem., Int. Ed. 2019, 58, 2321–2325.

    CAS  Google Scholar 

  45. Han, L. L.; Ou, P. D.; Liu, W.; Wang, X.; Wang, H. T.; Zhang, R.; Pao, C. W.; Liu, X. J.; Pong, W. F.; Song, J. et al. Design of Ru-Ni diatomic sites for efficient alkaline hydrogen oxidation. Sci. Adv. 2022, 8, eabm3779.

    Google Scholar 

  46. Han, L. L.; Cheng, H.; Liu, W.; Li, H. Q.; Ou, P. F.; Lin, R. Q.; Wang, H. T.; Pao, C. W.; Head, A. R.; Wang, C. H. et al. A single-atom library for guided monometallic and concentration-complex multimetallic designs. Nat. Mater. 2022, 21, 681–688.

    CAS  Google Scholar 

  47. Liu, W.; Han, L. L.; Wang, H. T.; Zhao, X. R.; Boscoboinik, J. A.; Liu, X. J.; Pao, C. W.; Sun, J. Q.; Zhuo, L. C.; Luo, J. et al. FeMo sub-nanoclusters/single atoms for neutral ammonia electrosynthesis. Nano Energy 2020, 77, 105078.

    CAS  Google Scholar 

  48. Sun, H. Z.; Zelekew, O. A.; Chen, X. Y.; Guo, Y. B.; Kuo, D. H.; Lu, Q. X.; Lin, J. G. A noble bimetal oxysulfide CuVOS catalyst for highly efficient catalytic reduction of 4-nitrophenol and organic dyes. RSC Adv. 2019, 9, 31828–31839.

    CAS  Google Scholar 

  49. Gnana Sundara Raj, B.; Angulakshmi, R.; Baskaran, N.; Wu, J. J.; Anandan, S.; Ashokkumar, M. Pseudocapacitive performance of Mn3O4-SnO2 hybrid nanoparticles synthesized via ultrasonication approach. J. Appl. Electrochem. 2020, 50, 609–619.

    CAS  Google Scholar 

  50. Kang, Y.; Park, J. Y.; Kim, D. W.; Kim, H.; Kang, Y. C. Antibacterial and physicochemical properties of Co-sputtered CuSn thin films. Surf. Interface Anal. 2018, 50, 138–145.

    CAS  Google Scholar 

  51. Chen, D. T.; Zhang, L. H.; Du, J.; Wang, H. H.; Guo, J. Y.; Zhan, J. Y.; Li, F.; Yu, F. S. A tandem strategy for enhancing electrochemical CO2 reduction activity of single-atom Cu-S1N3 catalysts via integration with Cu nanoclusters. Angew. Chem., Int. Ed. 2021, 60, 24022–24027.

    CAS  Google Scholar 

  52. Zhang, T.; Nie, X. W.; Yu, W. W.; Guo, X. W.; Song, C. S.; Si, R.; Liu, Y. F.; Zhao, Z. K. Single atomic Cu-N2 catalytic sites for highly active and selective hydroxylation of benzene to phenol. iScience 2019, 22, 97–108.

    CAS  Google Scholar 

  53. Wang, G.; Huang, R.; Zhang, J. W.; Mao, J. J.; Wang, D. S.; Li, Y. D. Synergistic modulation of the separation of photo-generated carriers via engineering of dual atomic sites for promoting photocatalytic performance. Adv. Mater. 2021, 33, 2105904.

    CAS  Google Scholar 

  54. Guo, J. Y.; Zhang, W. L.; Zhang, L. H.; Chen, D. T.; Zhan, J. Y.; Wang, X. L.; Shiju, N. R.; Yu, F. S. Control over electrochemical CO2 reduction selectivity by coordination engineering of tin single-atom catalysts. Adv. Sci. 2021, 8, 2102884.

    CAS  Google Scholar 

  55. Zhang, Y. Z.; Jang, H.; Ge, X.; Zhang, W.; Li, Z. J.; Hou, L. Q.; Zhai, L.; Wei, X. Q.; Wang, Z.; Kim, M. G. et al. Single-atom Sn on tensile-strained ZnO nanosheets for highly efficient conversion of CO2 into formate. Adv. Energy Mater. 2022, 12, 2202695.

    CAS  Google Scholar 

  56. Bulushev, D. A.; Chuvilin, A. L.; Sobolev, V. I.; Stolyarova, S. G.; Shubin, Y. V.; Asanov, I. P.; Ishchenko, A. V.; Magnani, G.; Riccò, M.; Okotrub, A. V. et al. Copper on carbon materials: Stabilization by nitrogen do**. J. Mater. Chem. A 2017, 5, 10574–10583.

    CAS  Google Scholar 

  57. Zu, X. L.; Li, X. D.; Liu, W.; Sun, Y. F.; Xu, J. Q.; Yao, T.; Yan, W. S.; Gao, S.; Wang, C. M.; Wei, S. Q. et al. Efficient and robust carbon dioxide electroreduction enabled by atomically dispersed Snδ+ sites. Adv. Mater. 2019, 31, 1808135.

    Google Scholar 

  58. Henderson, M. A. An HREELS and TPD study of water on TiO2(110): The extent of molecular versus dissociative adsorption. Surf. Sci. 1996, 355, 151–166.

    CAS  Google Scholar 

  59. Zhong, X. H.; Liang, S. J.; Yang, T. T.; Zeng, G. C.; Zhong, Z. Q.; Deng, H.; Zhang, L.; Sun, X. L. Sn dopants with synergistic oxygen vacancies boost CO2 electroreduction on CuO nanosheets to CO at low overpotential. ACS Nano 2022, 16, 19210–19219.

    CAS  Google Scholar 

  60. Chi, S. Y.; Chen, Q.; Zhao, S. S.; Si, D. H.; Wu, Q. J.; Huang, Y. B.; Cao, R. Three-dimensional porphyrinic covalent organic frameworks for highly efficient electroreduction of carbon dioxide. J. Mater. Chem. A 2022, 10, 4653–4659.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the startup funding of H. L. X. The XAFS/EXAFS spectra obtained from beamline TPS 44A at National Synchrotron Radiation Research Center (NSRRC) are appreciated. The authors thank Hsiao-Tsu Wang, Wei-Xuan Lin, Chih-Wen Pao, and Way-Faung Pong for the acquisition and analysis of the XAFS data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lili Han or Huolin L. **n.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Li, H., Ou, P. et al. Isolated Cu-Sn diatomic sites for enhanced electroreduction of CO2 to CO. Nano Res. 16, 8729–8736 (2023). https://doi.org/10.1007/s12274-023-5513-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5513-5

Keywords

Navigation