Log in

Heterostructuring 2D Co2P nanosheets with 0D CoP via a salt-assisted strategy for boosting hydrogen evolution from ammonia borane hydrolysis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ammonia borane (NH3BH3, AB) holds promise for chemical storage of hydrogen. However, designing superb and low-cost photocatalyst to drive hydrogen evolution from AB under visible light irradiation is highly desirable but remains a major challenge for promoting the practical utilization of AB. Herein, we demonstrated a heterostructure photocatalyst consisting of zero-dimensional (0D) CoP nanoparticles immobilized on two-dimensional (2D) Co2P nanosheets (CoP/Co2Ps) as a high-performance and low-cost catalyst for hydrogen evolution from AB hydrolysis, in which 0D/2D heterostructure was synthesized using the salt-induced phase transformation strategy. Interestingly, the optimized CoP/Co2Ps exhibit a robust H2 evolution rate of 32.1 L·min−1·gCo−1, corresponding to a turnover frequency (TOF) value of 64.1 min−1, being among the highest TOF for non-noble-metal catalysts ever reported, even outperforming some precious metal catalysts. This work not only opens a new avenue to accelerate hydrogen evolution from AB by regulating the electronic structures of heterointerfaces, but also provides a novel strategy for the construction of precious-metal-free materials for hydrogen-related energy catalysis in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

    CAS  Google Scholar 

  2. Wang, C. L.; Astruc, D. Recent developments of nanocatalyzed liquid-phase hydrogen generation. Chem. Soc. Rev. 2021, 50, 3437–3484.

    CAS  Google Scholar 

  3. He, T.; Huang, Z. H.; Yuan, S.; Lv, X. L.; Kong, X. J.; Zou, X. D.; Zhou, H. C.; Li, J. R. Kinetically controlled reticular assembly of a chemically stable mesoporous Ni(II)-pyrazolate metal-organic framework. J. Am. Chem. Soc. 2020, 142, 13491–13499.

    CAS  Google Scholar 

  4. Lang, C. G.; Jia, Y.; Yao, X. D. Recent advances in liquid-phase chemical hydrogen storage. Energy Storage Mater. 2020, 26, 290–312.

    Google Scholar 

  5. Tahawy, R.; Doustkhah, E.; Abdel-Aal, E. A.; Esmat, M.; Farghaly, F. E.; El-Hosainy, H.; Tsunoji, N.; El-Hosiny, F. I.; Yamauchi, Y.; Assadi, M. H. N. et al. Exceptionally stable green rust, a mixed-valent iron-layered double hydroxide, as an efficient solar photocatalyst for H2 production from ammonia borane. Appl. Catal. B Environ. 2021, 286, 119854.

    CAS  Google Scholar 

  6. Sun, Q. M.; Wang, N.; Xu, Q.; Yu, J. H. Nanopore-supported metal nanocatalysts for efficient hydrogen generation from liquid-phase chemical hydrogen storage materials. Adv. Mater. 2020, 32, 2001818.

    CAS  Google Scholar 

  7. Wan, C.; Zhou, L.; Xu, S. M.; **, B. Y.; Ge, X.; Qian, X.; Xu, L. X.; Chen, F. Q.; Zhan, X. L.; Yang, Y. R. et al. Defect engineered mesoporous graphitic carbon nitride modified with AgPd nanoparticles for enhanced photocatalytic hydrogen evolution from formic acid. Chem. Eng. J. 2022, 429, 132388.

    CAS  Google Scholar 

  8. Wan, C.; Zhou, L.; Sun, L.; Xu, L. X.; Cheng, D. G.; Chen, F. Q.; Zhan, X. L.; Yang, Y. R. Boosting visible-light-driven hydrogen evolution from formic acid over AgPd/2D g-C3N4 nanosheets Mott-Schottky photocatalyst. Chem. Eng. J. 2020, 396, 125229.

    CAS  Google Scholar 

  9. Sun, Q. M.; Wang, N.; Zhang, T. J.; Bai, R. S.; Mayoral, A.; Zhang, P.; Zhang, Q. H.; Terasaki, O.; Yu, J. H. Zeolite-encaged single-atom rhodium catalysts: Highly-efficient hydrogen generation and shape-selective tandem hydrogenation of nitroarenes. Angew. Chem., Int. Ed. 2019, 58, 18570–18576.

    CAS  Google Scholar 

  10. Du, X. Q.; Liu, C.; Du, C.; Cai, P.; Cheng, G. Z.; Luo, W. Nitrogen-doped graphene hydrogel-supported NiPt−CeOx nanocomposites and their superior catalysis for hydrogen generation from hydrazine at room temperature. Nano Res. 2017, 10, 2856–2865.

    CAS  Google Scholar 

  11. Wan, C.; Sun, L.; Xu, L. X.; Cheng, D. G.; Chen, F. Q.; Zhan, X. L.; Yang, Y. R. Novel NiPt alloy nanoparticle decorated 2D layered g-C3N4 nanosheets: A highly efficient catalyst for hydrogen generation from hydrous hydrazine. J. Mater. Chem. A 2019, 7, 8798–8804.

    CAS  Google Scholar 

  12. Li, P.; Chen, R.; Huang, Y. Q.; Li, W. Q.; Zhao, S. E.; Tian, S. H. Activating transition metal via synergistic anomalous phase and do** engineering towards enhanced dehydrogenation of ammonia borane. Appl. Catal. B Environ. 2022, 300, 120725.

    CAS  Google Scholar 

  13. Zhou, S. J.; Yang, Y. S.; Yin, P.; Ren, Z.; Wang, L.; Wei, M. Metal-support synergistic catalysis in Pt/MoO3−x nanorods toward ammonia borane hydrolysis with efficient hydrogen generation. ACS Appl. Mater. Interfaces 2022, 14, 5275–5286.

    CAS  Google Scholar 

  14. Rossin, A.; Peruzzini, M. Ammonia-borane and amine-borane dehydrogenation mediated by complex metal hydrides. Chem. Rev. 2016, 116, 8848–8872.

    CAS  Google Scholar 

  15. Zhang, J. K.; Zheng, X. H.; Yu, W. L.; Feng, X.; Qin, Y. Unravelling the synergy in platinum-nickel bimetal catalysts designed by atomic layer deposition for efficient hydrolytic dehydrogenation of ammonia borane. Appl. Catal. B Environ. 2022, 306, 121116.

    CAS  Google Scholar 

  16. Tong, F. X.; Liang, X. Z.; Wang, Z. Y.; Liu, Y. Y.; Wang, P.; Cheng, H. F.; Dai, Y.; Zheng, Z. K.; Huang, B. B. Probing the mechanism of plasmon-enhanced ammonia borane methanolysis on a CuAg alloy at a single-particle level. ACS Catal. 2021, 11, 10814–10823.

    CAS  Google Scholar 

  17. Wang, Y.; Li, J. L.; Shi, W. X.; Zhang, Z. M.; Guo, S.; Si, R.; Liu, M.; Zhou, H. C.; Yao, S.; An, C. H. et al. Unveiling single atom nucleation for isolating ultrafine fcc Ru nanoclusters with outstanding dehydrogenation activity. Adv. Energy Mater. 2020, 10, 2002138.

    CAS  Google Scholar 

  18. Fang, Y.; Li, J. L.; Togo, T.; **, F. Y.; **ao, Z. F.; Liu, L. J.; Drake, H.; Lian, X. Z.; Zhou, H. C. Ultra-small face-centered-cubic Ru nanoparticles confined within a porous coordination cage for dehydrogenation. Chem 2018, 4, 555–563.

    CAS  Google Scholar 

  19. Kang, N. X.; Wang, Q.; Djeda, R.; Wang, W. J.; Fu, F. Y.; Moro, M. M.; Ramirez, M. D. L. A.; Moya, S.; Coy, E.; Salmon, L. et al. Visible-light acceleration of H2 evolution from aqueous solutions of inorganic hydrides catalyzed by gold-transition-metal nanoalloys. ACS Appl. Mater. Interfaces 2020, 12, 53816–53826.

    CAS  Google Scholar 

  20. Chen, Y.; Yang, X. C.; Kitta, M.; Xu, Q. Monodispersed Pt nanoparticles on reduced graphene oxide by a non-noble metal sacrificial approach for hydrolytic dehydrogenation of ammonia borane. Nano Res. 2017, 10, 3811–3816.

    CAS  Google Scholar 

  21. Yang, G.; Guan, S. Y.; Mehdi, S.; Fan, Y. P.; Liu, B. Z.; Li, B. J. Co−CoOx. supported onto TiO2 coated with carbon as a catalyst for efficient and stable hydrogen generation from ammonia borane. Green Energy Environ. 2021, 6, 236–243.

    CAS  Google Scholar 

  22. Huang, H. L.; Wang, C.; Li, Q.; Wang, R. Q.; Yang, Y. Y.; Muhetaer, A.; Huang, F. Q.; Han, B.; Xu, D. S. Efficient and full-spectrum photothermal dehydrogenation of ammonia borane for low-temperature release of hydrogen. Adv. Funct. Mater. 2021, 31, 2007591.

    CAS  Google Scholar 

  23. Wu, H.; Wu, M.; Wang, B. Y.; Yong, X.; Liu, Y. S.; Li, B. J.; Liu, B. Z.; Lu, S. Y. Interface electron collaborative migration of Co−Co3O4/carbon dots: Boosting the hydrolytic dehydrogenation of ammonia borane. J. Energy Chem. 2020, 48, 43–53.

    Google Scholar 

  24. He, J. H.; Huang, Z. W.; Chen, W. Z.; **ao, X. Z.; Yao, Z. D.; Liang, Z. Q.; Zhan, L. J.; Lv, L.; Qi, J. C.; Fan, X. L. et al. 0D/1D/2D Co@Co2Mo3O8 nanocomposite constructed by mutual-supported Co2Mo3O8 nanosheet and Co nanoparticle: Synthesis and enhanced hydrolytic dehydrogenation of ammonia borane. Chem. Eng. J. 2022, 431, 133697.

    CAS  Google Scholar 

  25. Filiz, B. C.; Figen, A. K.; Pişkin, S. The remarkable role of metal promoters on the catalytic activity of Co−Cu based nanoparticles for boosting hydrogen evolution: Ammonia borane hydrolysis. Appl. Catal. B Environ. 2018, 238, 365–380.

    Google Scholar 

  26. Feng, K.; Zhong, J.; Zhao, B. H.; Zhang, H.; Xu, L.; Sun, X. H.; Lee, S. T. CuxCo1−xO nanoparticles on graphene oxide as a synergistic catalyst for high-efficiency hydrolysis of ammonia-borane. Angew. Chem., Int. Ed. 2016, 55, 11950–11954.

    CAS  Google Scholar 

  27. Yen, H.; Seo, Y.; Kaliaguine, S.; Kleitz, F. Role of metal-support interactions, particle size, and metal-metal synergy in CuNi nanocatalysts for H2 generation. ACS Catal. 2015, 5, 5505–5511.

    CAS  Google Scholar 

  28. Hou, C. C.; Chen, Q. Q.; Li, K.; Wang, C. J.; Peng, C. Y.; Shi, R.; Chen, Y. Tailoring three-dimensional porous cobalt phosphides templated from bimetallic metal-organic frameworks as precious metal-free catalysts towards the dehydrogenation of ammonia-borane. J. Mater. Chem. A 2019, 7, 8277–8283.

    CAS  Google Scholar 

  29. Peng, C. Y.; Kang, L.; Cao, S.; Chen, Y.; Lin, Z. S.; Fu, W. F. Nanostructured Ni2P as a robust catalyst for the hydrolytic dehydrogenation of ammonia-borane. Angew. Chem., Int. Ed. 2015, 127, 15951–15955.

    Google Scholar 

  30. Hou, C. C.; Li, Q.; Wang, C. J.; Peng, C. Y.; Chen, Q. Q.; Ye, H. F.; Fu, W. F.; Che, C. M.; López, N.; Chen, Y. Ternary Ni−Co−P nanoparticles as noble-metal-free catalysts to boost the hydrolytic dehydrogenation of ammonia-borane. Energy Environ. Sci. 2017, 10, 1770–1776.

    CAS  Google Scholar 

  31. Wang, Y. T.; Shen, G. Q.; Zhang, Y. X.; Pan, L.; Zhang, X. W.; Zou, J. J. Visible-light-induced unbalanced charge on NiCoP/TiO2 sensitized system for rapid H2 generation from hydrolysis of ammonia borane. Appl. Catal. B Environ. 2020, 260, 118183.

    CAS  Google Scholar 

  32. Chen, Y. F.; Feng, K.; Yuan, G. T.; Kang, Z. H.; Zhong, J. Highly efficient CoNiP nanoboxes on graphene oxide for the hydrolysis of ammonia borane. Chem. Eng. J. 2022, 428, 131219.

    CAS  Google Scholar 

  33. Sun, M.; Liu, H. J.; Qu, J. H.; Li, J. H. Earth-rich transition metal phosphide for energy conversion and storage. Adv. Energy Mater. 2016, 6, 1600087.

    Google Scholar 

  34. Man, H. W.; Tsang, C. S.; Li, M. M. J.; Mo, J. Y.; Huang, B. L.; Lee, L. Y. S.; Leung, Y. C.; Wong, K. Y.; Tsang, S. C. E. Transition metal-doped nickel phosphide nanoparticles as electro-and photocatalysts for hydrogen generation reactions. Appl. Catal. B Environ. 2019, 242, 186–193.

    CAS  Google Scholar 

  35. Huang, J.; **ong, Y. S.; Peng, Z. Y.; Chen, L. F.; Wang, L.; Xu, Y. Z.; Tan, L. C.; Yuan, K.; Chen, Y. W. A general electrodeposition strategy for fabricating ultrathin nickel cobalt phosphate nanosheets with ultrahigh capacity and rate performance. ACS Nano 2020, 14, 14201–14211.

    CAS  Google Scholar 

  36. Wan, C.; Liang, Y.; Zhou, L.; Huang, J. D.; Wang, J. P.; Chen, F. Q.; Zhan, X. L.; Cheng, D. G. Integration of morphology and electronic structure modulation on cobalt phosphide nanosheets to boost photocatalytic hydrogen evolution from ammonia borane hydrolysis, Green Energy & Environ., in press, https://doi.org/10.1016/j.gee.2022.06.007.

  37. Zhang, S. S.; Xu, J.; Cheng, H. M.; Zang, C. C.; Bian, F. X.; Sun, B.; Shen, Y.; Jiang, H. Y. Photocatalytic H2 evolution from ammonia borane: Improvement of charge separation and directional charge transmission. ChemSusChem 2020, 13, 5264–5272.

    CAS  Google Scholar 

  38. Lv, Z. P.; Ma, W. S.; Wang, M.; Dang, J.; Jian, K. L.; Liu, D.; Huang, D. J. Co-constructing interfaces of multiheterostructure on MXene (Ti3C2Tx)-modified 3D self-supporting electrode for ultraefficient electrocatalytic HER in alkaline media. Adv. Funct. Mater. 2021, 31, 2102576.

    CAS  Google Scholar 

  39. Boppella, R.; Tan, J. W.; Yang, W.; Moon, J. Homologous CoP/NiCoP heterostructure on N-doped carbon for highly efficient and pH-universal hydrogen evolution electrocatalysis. Adv. Funct. Mater. 2019, 29, 1807976.

    Google Scholar 

  40. Hua, Y. P.; Xu, Q. C.; Hu, Y. J.; Jiang, H.; Li, C. Z. Interface-strengthened CoP nanosheet array with Co2P nanoparticles as efficient electrocatalysts for overall water splitting. J. Energy Chem. 2019, 37, 1–6.

    Google Scholar 

  41. Zhang, G. P.; Li, X. X.; Wang, M. M.; Li, X. Q.; Wang, Y. R.; Huang, S. T.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H. et al. 2D/2D hierarchical Co3O4/ZnIn2S4 heterojunction with robust built-in electric field for efficient photocatalytic hydrogen evolution. Nano Res., in press, https://doi.org/10.1007/s12274-022-5096-6.

  42. Li, H.; Wen, P.; Itanze, D. S.; Kim, M. W.; Adhikari, S.; Lu, C.; Jiang, L.; Qiu, Y. J.; Geyer, S. M. Phosphorus-rich colloidal cobalt diphosphide (CoP2) nanocrystals for electrochemical and photoelectrochemical hydrogen evolution. Adv. Mater. 2019, 31, 1900813.

    Google Scholar 

  43. Zhang, H. H.; Zhang, K.; Ashraf, S.; Fan, Y. P.; Guan, S. Y.; Wu, X. L.; Liu, Y. S.; Liu, B. Z.; Li, B. J. Polar O−Co−P surface for bimolecular activation in catalytic hydrogen generation. Energy Environ. Mater., in press, https://doi.org/10.1002/eem2.12273.

  44. Bulut, A.; Yurderi, M.; Ertas, İ. E.; Celebi, M.; Kaya, M.; Zahmakiran, M. Carbon dispersed copper-cobalt alloy nanoparticles: A cost-effective heterogeneous catalyst with exceptional performance in the hydrolytic dehydrogenation of ammonia-borane. Appl. Catal. B Environ. 2016, 180, 121–129.

    CAS  Google Scholar 

  45. Han, Y. L.; Meng, Y.; Guo, Y.; Jia, P. L.; Huang, G. F.; Gu, X. J. MOF-directed construction of Cu-carbon and Cu@N-doped carbon as superior supports of metal nanoparticles toward efficient hydrogen generation. ACS Appl. Mater. Interfaces 2021, 13, 52921–52930.

    CAS  Google Scholar 

  46. Li, P.; Chen, R.; Zhao, S. E.; Li, W. Q.; Lin, Y. N.; Yu, Y. Architecture control and electronic structure engineering over Ni-based nitride nanocomposite for boosting ammonia borane dehydrogenation. Appl. Catal. B Environ. 2021, 298, 120523.

    CAS  Google Scholar 

  47. Zhang, L. J.; Ye, J.; Tu, Y.; Wang, Q. Y.; Pan, H. B.; Wu, L. H.; Zheng, X. S.; Zhu, J. F. Oxygen modified CoP2 supported palladium nanoparticles as highly efficient catalyst for hydrolysis of ammonia borane. Nano Res. 2022, 15, 3034–3041.

    CAS  Google Scholar 

  48. Mo, B. Y.; Li, S. W.; Wen, H.; Zhang, H. H.; Zhang, H. Y.; Wu, J.; Li, B. J.; Hou, H. W. Functional group regulated Ni/Ti3C2Tx (Tx = F, −OH) holding bimolecular activation tunnel for enhanced ammonia borane hydrolysis. ACS Appl. Mater. Interfaces 2022, 14, 16320–16329.

    CAS  Google Scholar 

  49. Lu, D. S.; Li, J. H.; Lin, C. H.; Liao, J. Y.; Feng, Y. F.; Ding, Z. T.; Li, Z. W.; Liu, Q. B.; Li, H. A simple and scalable route to synthesize CoxCu1−xCo2O4@CoyCu1−yCo2O4 yolk-shell microspheres, a high-performance catalyst to hydrolyze ammonia borane for hydrogen production. Small 2019, 15, 1805460.

    Google Scholar 

  50. Guan, S. Y.; An, L. L.; Ashraf, S.; Zhang, L. N.; Liu, B. Z.; Fan, Y. P.; Li, B. J. Oxygen vacancy excites Co3O4 nanocrystals embedded into carbon nitride for accelerated hydrogen generation. Appl. Catal. B Environ. 2020, 269, 118775.

    CAS  Google Scholar 

  51. Yao, Q. L.; Lu, Z. H.; Yang, Y. W.; Chen, Y. Z.; Chen, X. S.; Jiang, H. L. Facile synthesis of graphene-supported Ni−CeOx nanocomposites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane. Nano Res. 2018, 11, 4412–4422.

    CAS  Google Scholar 

  52. Kang, Y. Q.; Jiang, B.; Yang, J. J.; Wan, Z.; Na, J.; Li, Q.; Li, H. X.; Henzie, J.; Sakka, Y.; Yamauchi, Y. et al. Amorphous alloy architectures in pore walls: Mesoporous amorphous NiCoB alloy spheres with controlled compositions via a chemical reduction. ACS Nano 2020, 14, 17224–17232.

    CAS  Google Scholar 

  53. Yin, H. B.; Kuwahara, Y.; Mori, K.; Yamashita, H. Plasmonic metal/MoxW1−xO3−y for visible-light-enhanced H2 production from ammonia borane. J. Mater. Chem. A 2018, 6, 10932–10938.

    CAS  Google Scholar 

  54. Cui, C. C.; Liu, Y. Y.; Mehdi, S.; Wen, H.; Zhou, B. J.; Li, J. P.; Li, B. J. Enhancing effect of Fe-do** on the activity of nano Ni catalyst towards hydrogen evolution from NH3BH3. Appl. Catal. B Environ. 2020, 265, 118612.

    CAS  Google Scholar 

  55. Wang, C. Y.; Ren, Y. Y.; Zhao, J. L.; Sun, S.; Du, X. H.; Wang, M. M.; Ma, G.; Yu, H. R.; Li, L. L.; Yu, X. F. et al. Oxygen vacancy-attired dual-active-sites Cu/Cu0.76Co2.24O4 drives electron transfer for efficient ammonia borane dehydrogenation. Appl. Catal. B Environ. 2022, 314, 121494.

    CAS  Google Scholar 

  56. Li, P.; Huang, Y. Q.; Huang, Q. H.; Chen, R.; Li, J. X.; Tian, S. H. Cobalt phosphide with porous multishelled hollow structure design realizing promoted ammonia borane dehydrogenation: Elucidating roles of architectural and electronic effect. Appl. Catal. B Environ. 2022, 313, 121444.

    CAS  Google Scholar 

  57. Metin, Ö.; Özkar, S.; Sun, S. H. Monodisperse nickel nanoparticles supported on SiO2 as an effective catalyst for the hydrolysis of ammonia-borane. Nano Res. 2010, 3, 676–684.

    CAS  Google Scholar 

  58. Zhang, H. H.; Liu, Y. Y.; Wei, H. J.; Wang, C. M.; Liu, T.; Wu, X. L.; Ashraf, S.; Mehdi, S.; Guan, S. Y.; Fan, Y. P. et al. Atomic-bridge structure in B−Co−P dual-active sites on boron nitride nanosheets for catalytic hydrogen generation. Appl. Catal. B Environ. 2022, 314, 121495.

    CAS  Google Scholar 

  59. **a, B. Q.; Chen, K.; Luo, W.; Cheng, G. Z. NiRh nanoparticles supported on nitrogen-doped porous carbon as highly efficient catalysts for dehydrogenation of hydrazine in alkaline solution. Nano Res. 2015, 8, 3472–3479.

    CAS  Google Scholar 

  60. Fang, M. H.; Wu, S. Y.; Chang, Y. H.; Narwane, M.; Chen, B. H.; Liu, W. L.; Kurniawan, D.; Chiang, W. H.; Lin, C. H.; Chuang, Y. C. et al. Mechanistic insight into the synergetic interaction of ammonia borane and water on ZIF-67-derived Co@porous carbon for controlled generation of dihydrogen. ACS Appl. Mater. Interfaces 2021, 13, 47465–47477.

    CAS  Google Scholar 

  61. Cui, L.; Xu, Y. H.; Niu, L.; Yang, W. R.; Liu, J. Q. Monolithically integrated CoP nanowire array: An on/off switch for effective on-demand hydrogen generation via hydrolysis of NaBH4 and NH3BH3. Nano Res. 2017, 10, 595–604.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22108238, 21878259, 22278353, and U22A20408), the Zhejiang Provincial Natural Science Foundation of China (Nos. LR18B060001 and Z23B060009), and China Postdoctoral Science Foundation (Nos. 2020T130580, PC2022046, and 2019M662060). We also appreciate the Shiyanjia Lab (www.shiyanjia.com) for material characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dang-Guo Cheng.

Electronic Supplementary Material

12274_2023_5388_MOESM1_ESM.pdf

Heterostructuring 2D Co2P nanosheets with 0D CoP via a salt-assisted strategy for boosting hydrogen evolution from ammonia borane hydrolysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, C., Liu, X., Wang, J. et al. Heterostructuring 2D Co2P nanosheets with 0D CoP via a salt-assisted strategy for boosting hydrogen evolution from ammonia borane hydrolysis. Nano Res. 16, 6260–6269 (2023). https://doi.org/10.1007/s12274-023-5388-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5388-5

Keywords

Navigation