Log in

Enhancing sulfur cathode process via a functionalized complex molecule

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium-sulfur batteries are regarded as promising next-generation energy storage batteries for their ultra-high theoretical energy density. However, the complex sulfur electrode process with sluggish sulfur conversion reactions is a critical issue for lithium-sulfur batteries, in which catalytic interfacial reactions and accelerated lithium-ion diffusion are the key factors. Our previous work has shown that implanting functional molecules with multiple redox properties in the electrode can break through the conventional diffusion layer constraints and achieve forced convection. In this work, a functionalized complex molecule, methylene blue anthraquinone-2-sulfonate (MB-AQ), with multiple redox activities as well as abundant active sites, was synthesized and introduced into the sulfur cathode. In addition to accelerating the transport of lithium ions by reversible inhaling and exhaling lithium ions, the MB-AQ can combine polysulfides by its active sites to accelerate sulfur conversion reactions. Benefiting from two functions of accelerating ion diffusion and catalyzing interfacial reactions, MB-AQ/reduced graphene oxide (rGO)/S cathode can achieve high initial capacities of 884 and 674 mAh·g−1 with stable cycling of 700 and 1,000 times at 1 and 4 C, respectively. It is worth mentioning that the capacity of 462 mAh·g-1 can be achieved even at a high current density of 6 C. This work provides a new approach to enhancing the sulfur cathode process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Manthiram, A.; Chung, S. H.; Zu, C. X. Lithium-sulfur batteries: Progress and prospects. Adv. Mater. 2015, 27, 1980–2006.

    Article  CAS  Google Scholar 

  2. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    Article  CAS  Google Scholar 

  3. Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.

    Article  CAS  Google Scholar 

  4. Song, Y. Z.; Cai, W. L.; Kong, L.; Cai, J. S.; Zhang, Q.; Sun, J. Y. Rationalizing electrocatalysis of Li-S chemistry by mediator design: Progress and prospects. Adv. Energy Mater. 2020, 10, 1901075.

    Article  CAS  Google Scholar 

  5. Bonnick, P.; Muldoon, J. The Dr Jekyll and Mr Hyde of lithium sulfur batteries. Energy Environ. Sci. 2020, 13, 4808–4833.

    Article  CAS  Google Scholar 

  6. Zhao, C. X.; Li, X. Y.; Zhao, M.; Chen, Z. X.; Song, Y. W.; Chen, W. J.; Liu, J. N.; Wang, B.; Zhang, X. Q.; Chen, C. M. et al. Semi-immobilized molecular electrocatalysts for high-performance lithium-sulfur batteries. J. Am. Chem. Soc. 2021, 143, 19865–19872.

    Article  CAS  Google Scholar 

  7. Yang, B.; Guo, D. Y.; Lin, P. R.; Zhou, L.; Li, J.; Fang, G. Y.; Wang, J. Y.; **, H. L.; Chen, X. A.; Wang, S. Hydroxylated multi-walled carbon nanotubes covalently modified with tris(hydroxypropyl) phosphine as a functional interlayer for advanced lithium-sulfur batteries. Angew. Chem., Int. Ed. 2022, 61, e202204327.

    CAS  Google Scholar 

  8. Yang, D. W.; Zhang, C. Q.; Biendicho, J. J.; Han, X.; Liang, Z. F.; Du, R. F.; Li, M. Y.; Li, J. S.; Arbiol, J.; Llorca, J. et al. ZnSe/N-doped carbon nanoreactor with multiple adsorption sites for stable lithium-sulfur batteries. ACS Nano 2020, 14, 15492–15504.

    Article  CAS  Google Scholar 

  9. Liu, J. Y.; Ding, Y. Y.; Shen, Z. H.; Zhang, H. G.; Han, T. L.; Guan, Y.; Tian, Y. C.; Braun, P. V. A Lamellar yolk—shell lithium-sulfur battery cathode displaying ultralong cycling life, high rate performance, and temperature tolerance. Adv. Sci (Weinh.) 2022, 9, 2103517.

    CAS  Google Scholar 

  10. Fei, B.; Zhang, C. Q.; Cai, D. P.; Zheng, J. Y.; Chen, Q. D.; **e, Y. L.; Zhu, L. Z.; Cabot, A.; Zhan, H. B. Hierarchical nanoreactor with multiple adsorption and catalytic sites for robust lithium-sulfur batteries. ACS Nano 2021, 15, 6849–6860.

    Article  CAS  Google Scholar 

  11. Lei, J.; Fan, X. X.; Liu, T.; Xu, P.; Hou, Q.; Li, K.; Yuan, R. M.; Zheng, M. S.; Dong, Q. F.; Chen, J. J. Single-dispersed polyoxometalate clusters embedded on multilayer graphene as a bifunctional electrocatalyst for efficient Li-S batteries. Nat. Commun. 2022, 13, 202.

    Article  CAS  Google Scholar 

  12. Du, Z. Z.; Chen, X. J.; Hu, W.; Chuang, C. H.; **e, S.; Hu, A. J.; Yan, W. S.; Kong, X. H.; Wu, X. J.; Ji, H. X. et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 2019, 141, 3977–3985.

    Article  CAS  Google Scholar 

  13. Li, C.; **, Z.; Guo, D.; Chen, X.; Yin, L. Chemical immobilization effect on lithium polysulfides for lithium-sulfur batteries. Small 2018, 14, 1701986.

    Article  Google Scholar 

  14. Wang, P.; Sun, F. H.; **ong, S. L.; Zhang, Z. C. Y.; Duan, B.; Zhang, C. H.; Feng, J. K.; **, B. J. WSe2 flakelets on N-doped graphene for accelerating polysulfide redox and regulating Li plating. Angew. Chem., Int. Ed. 2022, 61, e202116048.

    CAS  Google Scholar 

  15. Zhou, G. M.; Tian, H. Z.; **, Y.; Tao, X. Y.; Liu, B. F.; Zhang, R. F.; Seh, Z. W.; Zhuo, D.; Liu, Y. Y.; Sun, J. et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl. Acad. Sci. USA 2017, 114, 840–845.

    Article  CAS  Google Scholar 

  16. Fan, X. X.; Lei, J.; Hou, Q.; Lin, X. D.; Xu, P.; Fan, J. M.; Yuan, R. M.; Zheng, M. S.; Dong, Q. F. Forced ion flux by multi-redox molecule to break diffusion limit and boost electrode process. Cell Rep. Phys. Sci. 2022, 3, 100826.

    Article  CAS  Google Scholar 

  17. Wang, Z. J.; Fan, Q. Q.; Guo, W.; Yang, C. C.; Fu, Y. Z. Biredox-ionic anthraquinone-coupled ethylviologen composite enables reversible multielectron redox chemistry for Li-organic batteries. Adv. Sci. 2022, 9, 2103632.

    Article  CAS  Google Scholar 

  18. Faul, C. F. J.; Antonietti, M. Ionic self-assembly: Facile synthesis of supramolecular materials. Adv. Mater. 2003, 15, 673–683.

    Article  CAS  Google Scholar 

  19. Franke, D.; Vos, M.; Antonietti, M.; Sommerdijk, N. A. J. M.; Faul, C. F. J. Induced supramolecular chirality in nanostructured materials: Ionic self-assembly of perylene-chiral surfactant complexes. Chem. Mater. 2006, 18, 1839–1847.

    Article  CAS  Google Scholar 

  20. Martin, K. E.; Wang, Z. C.; Busani, T.; Garcia, R. M.; Chen, Z.; Jiang, Y. B.; Song, Y. J.; Jacobsen, J. L.; Vu, T. T.; Schore, N. E. Donor—acceptor biomorphs from the ionic self-assembly of porphyrins. J. Am. Chem. Soc. 2010, 132, 8194–8201.

    Article  CAS  Google Scholar 

  21. Wei, Z. X.; Shin, W.; Jiang, H.; Wu, X. Y.; Stickle, W. F.; Chen, G.; Lu, J.; Alex Greaney, P.; Du, F.; Ji, X. L. Reversible intercalation of methyl viologen as a dicationic charge carrier in aqueous batteries. Nat. Commun. 2019, 10, 3227.

    Article  Google Scholar 

  22. Luo, M. S.; Li, S.; Di, Z. X.; Yang, Z.; Chou, W. C.; Shi, B. C. Fischer—Tropsch synthesis: Effect of nitric acid pretreatment on graphene-supported cobalt catalyst. Appl. Catal. A:Gen. 2020, 599, 117608.

    Article  Google Scholar 

  23. Molina, A.; Patil, N.; Ventosa, E.; Liras, M.; Palma, J.; Marcilla, R. New anthraquinone-based conjugated microporous polymer cathode with ultrahigh specific surface area for high-performance lithium-ion batteries. Adv. Funct. Mater. 2020, 30, 1908074.

    Article  CAS  Google Scholar 

  24. Zhu, C. Y.; Zhang, W. J.; Li, G.; Li, C. L.; Qin, X. H. Ultra-simple and green two-step synthesis of sodium anthraquinone-2-sulfonate composite graphene (AQS/rGO) hydrogels for supercapacitor electrode materials. J. Alloys Compd. 2021, 862, 158472.

    Article  CAS  Google Scholar 

  25. Ovchinnikov, O. V.; Evtukhova, A. V.; Kondratenko, T. S.; Smirnov, M. S.; Khokhlov, V. Y.; Erina, O. V. Manifestation of intermolecular interactions in FTIR spectra of methylene blue molecules. Vib. Spectrosc. 2016, 86, 181–189.

    Article  CAS  Google Scholar 

  26. Zhang, Y. D.; An, Y. F.; Wu, L. Y.; Chen, H.; Li, Z. H.; Dou, H.; Murugadoss, V.; Fan, J. C.; Zhang, X. G.; Mai, X. M. et al. Metal-free energy storage systems: Combining batteries with capacitors based on a methylene blue functionalized graphene cathode. J. Mater. Chem. A 2019, 7, 19668–19675.

    Article  CAS  Google Scholar 

  27. Hernández, G.; Işik, M.; Mantione, D.; Pendashteh, A.; Navalpotro, P.; Shanmukaraj, D.; Marcilla, R.; Mecerreyes, D. Redox-active poly(ionic liquid)s as active materials for energy storage applications. J. Mater. Chem. A 2017, 5, 16231–16240.

    Article  Google Scholar 

  28. Zhao, J.; Yang, J. X.; Sun, P. F.; Xu, Y. H. Sodium sulfonate groups substituted anthraquinone as an organic cathode for potassium batteries. Electrochem. Commun. 2018, 86, 34–37.

    Article  CAS  Google Scholar 

  29. Yang, J.; Yang, Y.; Li, A. R.; Wang, Z. C.; Wang, H.; Yu, D. D.; Hu, P. F.; Qian, M. M.; Lin, J.; Guo, L. Sustainable treatment of dye wastewater for high-performance rechargeable battery cathodes. Energy Stor. Mater. 2019, 17, 334–340.

    Google Scholar 

  30. Kosswattaarachchi, A. M.; Cook, T. R. Repurposing the industrial dye methylene blue as an active component for redox flow batteries. ChemElectroChem 2018, 5, 3437–3442.

    Article  CAS  Google Scholar 

  31. Dai, Q. P.; Zhang, J. F.; Ma, M. The formation of composites from imidazolate polymer with epoxy resins. Appl. Surf. Sci. 1993, 72, 67–72.

    Article  CAS  Google Scholar 

  32. Yamada, Y.; Kim, J.; Matsuo, S.; Sato, S. Nitrogen-containing graphene analyzed by X-ray photoelectron spectroscopy. Carbon 2014, 70, 59–74.

    Article  CAS  Google Scholar 

  33. Seh, Z. W.; Wang, H. T.; Liu, N.; Zheng, G. Y.; Li, W. Y.; Yao, H. B.; Cui, Y. High-capacity Li2S-graphene oxide composite cathodes with stable cycling performance. Chem. Sci. 2014, 5, 1396–1400.

    Article  CAS  Google Scholar 

  34. Fu, Y. S.; Wu, Z.; Yuan, Y. F.; Chen, P.; Yu, L.; Yuan, L.; Han, Q. R.; Lan, Y. J.; Bai, W. X.; Kan, E. J. et al. Switchable encapsulation of polysulfides in the transition between sulfur and lithium sulfide. Nat. Commun. 2020, 11, 845.

    Article  CAS  Google Scholar 

  35. Chen, W.; Qian, T.; **ong, J.; Xu, N.; Liu, X. J.; Liu, J.; Zhou, J. Q.; Shen, X. W.; Yang, T. Z.; Chen, Y. et al. A new type of multifunctional polar binder: Toward practical application of high energy lithium sulfur batteries. Adv. Mater. 2017, 29, 1605160.

    Article  Google Scholar 

  36. Zhang, B. H.; Wu, J. F.; Gu, J. K.; Li, S.; Yan, T. Y.; Gao, X. P. The fundamental understanding of lithium polysulfides in ether-based electrolyte for lithium-sulfur batteries. ACS Energy Lett. 2021, 6, 537–546.

    Article  CAS  Google Scholar 

  37. Zhang, G.; Peng, H. J.; Zhao, C. Z.; Chen, X.; Zhao, L. D.; Li, P.; Huang, J. Q.; Zhang, Q. The radical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2018, 57, 16732–16736.

    Article  CAS  Google Scholar 

  38. Moy, D.; Manivannan, A.; Narayanan, S. R. Direct measurement of polysulfide shuttle current: A window into understanding the performance of lithium-sulfur cells. J. Electrochem. Soc. 2015, 162, A1–A7.

    Article  CAS  Google Scholar 

  39. Peng, H. J.; Zhang, Z. W.; Huang, J. Q.; Zhang, G.; **e, J.; Xu, W. T.; Shi, J. L.; Chen, X.; Cheng, X. B.; Zhang, Q. A cooperative interface for highly efficient lithium-sulfur batteries. Adv. Mater. 2016, 28, 9551–9558.

    Article  CAS  Google Scholar 

  40. Tan, G. Q.; Xu, R.; **ng, Z. Y.; Yuan, Y. F.; Lu, J.; Wen, J. G.; Liu, C.; Ma, L.; Zhan, C.; Liu, Q. et al. Burning lithium in CS2 for high-performing compact Li2S-graphene nanocapsules for Li-S batteries. Nat. Energy 2017, 2, 17090.

    Article  CAS  Google Scholar 

  41. Deng, Z. F.; Zhang, Z.; Lai, Y. Q.; Liu, J.; Li, J.; Liu, Y. X. Electrochemical impedance spectroscopy study of a lithium/sulfur battery: Modeling and analysis of capacity fading. J. Electrochem. Soc. 2013, 160, A553–A558.

    Article  CAS  Google Scholar 

  42. Sadd, M.; De Angelis, S.; Colding-Jørgensen, S.; Blanchard, D.; Johnsen, R. E.; Sanna, S.; Borisova, E.; Matic, A.; Bowen, J. R. Visualization of dissolution—precipitation processes in lithium-sulfur batteries. Adv. Energy Mater. 2022, 12, 2103126.

    Article  CAS  Google Scholar 

  43. Zhang, C. Q.; Du, R. F.; Biendicho, J. J.; Yi, M. J.; **ao, K.; Yang, D. W.; Zhang, T.; Wang, X.; Arbiol, J.; Llorca, J. et al. Tubular CoFeP@CN as a Mott—Schottky catalyst with multiple adsorption sites for robust lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2100432.

    Article  CAS  Google Scholar 

  44. Yuan, H. D.; Chen, X. L.; Zhou, G. M.; Zhang, W. K.; Luo, J. M.; Huang, H.; Gan, Y. P.; Liang, C.; **a, Y.; Zhang, J. et al. Efficient activation of Li2S by transition metal phosphides nanoparticles for highly stable lithium-sulfur batteries. ACS Energy Lett. 2017, 2, 1711–1719.

    Article  CAS  Google Scholar 

  45. Yuan, H. D.; Zhang, W. K.; Wang, J. G.; Zhou, G. M.; Zhuang, Z. Z.; Luo, J. M.; Huang, H.; Gan, Y. P.; Liang, C.; **a, Y. et al. Facilitation of sulfur evolution reaction by pyridinic nitrogen doped carbon nanoflakes for highly-stable lithium-sulfur batteries. Energy Stor. Mater. 2018, 10, 1–9.

    Google Scholar 

  46. Lin, Y. L.; Huang, S.; Zhong, L.; Wang, S. J.; Han, D. M.; Ren, S.; **ao, M.; Meng, Y. Z. Organic liquid electrolytes in Li-S batteries: Actualities and perspectives. Energy Stor. Mater. 2021, 34, 128–147.

    Google Scholar 

  47. Zhang, S. S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. J. Power Sources 2013, 231, 153–162.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. U1805254, 21773192, 22072117, and 22179112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanfeng Dong.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Q., Fan, X., Liu, G. et al. Enhancing sulfur cathode process via a functionalized complex molecule. Nano Res. 16, 8385–8393 (2023). https://doi.org/10.1007/s12274-022-5282-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5282-6

Keywords

Navigation