Log in

Melatonin and probiotics ameliorate nanoplastics-induced hematopoietic injury by modulating the gut microbiota-metabolism

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Plastic pollution has become a non-negligible global pollution problem. Nanoplastics (NP) can reach the bone marrow with blood circulation and develop hematotoxicity, but potential mechanisms and prevention strategies are lacking. Here, we report the biological distribution of NP particles in the bone marrow of mice and hematopoietic toxicity after exposure to 60 µg of 80 nm NP for 42 days. NP exposure inhibited the capability of bone marrow hematopoietic stem cells to renew and differentiate. Notably, probiotics and melatonin supplementation significantly ameliorated NP-induced hematopoietic damage, and the former was superior to the latter. And interestingly, melatonin and probiotic interventions may involve different microbes and metabolites. After melatonin intervention, creatine showed a stronger correlation with NP-induced gut microbiota disorders. In contrast, probiotic intervention reversed the levels of more gut microbes and plasma metabolites. Of these, threonine, malonylcarnitine, and 3-hydroxybutyric acid might be potential performers in the regulation of hematopoietic toxicity by gut microbes, as they had a more significant relationship with the identified microbes. In conclusion, supplementation with melatonin or probiotics may be two candidates to prevent hematopoietic toxicity attributable to NP exposure. Also, the multi-omics results may lay the foundation for future investigations into in-depth mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kershaw, P. K. S.; Leemseth, J. Woodring plastic debris in the ocean UNEP Yearbook emerging issues in our global environment; United Nations Environment Programme: Nairobi, 2011.

  2. Wang, C. H.; Zhao, J.; **ng, B. S. Environmental source, fate, and toxicity of microplastics. J. Hazard. Mater. 2021, 407, 124357.

    Article  CAS  Google Scholar 

  3. Geyer, R.; Jambeck, J. R.; Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782.

    Article  Google Scholar 

  4. Hirt, N.; Body-Malapel, M. Immunotoxicity and intestinal effects of nano- and microplastics: A review of the literature. Part. Fibre Toxicol. 2020, 17, 57.

    Article  Google Scholar 

  5. Prata, J. C.; da Costa, J. P.; Lopes, I.; Duarte, A. C.; Rocha-Santos, T. Environmental exposure to microplastics: An overview on possible human health effects. Sci. Total Environ. 2020, 702, 134455.

    Article  CAS  Google Scholar 

  6. Abbasi, S.; Turner, A. Human exposure to microplastics: A study in Iran. J. Hazard. Mater. 2021, 403, 123799.

    Article  CAS  Google Scholar 

  7. Jiang, B. R.; Kauffman, A. E.; Li, L.; McFee, W.; Cai, B.; Weinstein, J.; Lead, J. R.; Chatterjee, S.; Scott, G. I.; **ao, S. Health impacts of environmental contamination of micro- and nanoplastics: A review. Environ. Health Prev. Med. 2020, 25, 29.

    Article  Google Scholar 

  8. Hussain, N.; Jaitley, V.; Florence, A. T. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv. Drug Deliv. Rev. 2001, 50, 107–142.

    Article  CAS  Google Scholar 

  9. Gopinath, P. M.; Saranya, V.; Vijayakumar, S.; Mythili Meera, M.; Ruprekha, S.; Kunal, R.; Pranay, A.; Thomas, J.; Mukherjee, A.; Chandrasekaran, N. Assessment on interactive prospectives of nanoplastics with plasma proteins and the toxicological impacts of virgin, coronated and environmentally released-nanoplastics. Sci. Rep. 2019, 9, 8860.

    Article  Google Scholar 

  10. Deng, Y. F.; Zhang, Y.; Lemos, B.; Ren, H. Q. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci. Rep. 2017, 7, 46687.

    Article  Google Scholar 

  11. Liang, B. X.; Zhong, Y. Z.; Huang, Y. J.; Lin, X.; Liu, J.; Lin, L.; Hu, M. J.; Jiang, J. Y.; Dai, M. Z.; Wang, B. et al. Underestimated health risks: Polystyrene micro- and nanoplastics jointly induce intestinal barrier dysfunction by ROS-mediated epithelial cell apoptosis. Part. Fibre Toxicol. 2021, 18, 20.

    Article  CAS  Google Scholar 

  12. Yang, D. Q.; Zhu, J. D.; Zhou, X. S.; Pan, D.; Nan, S.; Yin, R. L.; Lei, Q. H.; Ma, N.; Zhu, H. M.; Chen, J. G. et al. Polystyrene micro-and nano-particle coexposure injures fetal thalamus by inducing ROS-mediated cell apoptosis. Environ. Int. 2022, 166, 107362.

    Article  CAS  Google Scholar 

  13. Zhang, Y. F.; Gao, S.; **a, J.; Liu, F. Hematopoietic hierarchy—An updated roadmap. Trends Cell Biol. 2018, 28, 976–986.

    Article  Google Scholar 

  14. Lim, D.; Jeong, J.; Song, K. S.; Sung, J. H.; Oh, S. M.; Choi, J. Inhalation toxicity of polystyrene micro(nano)plastics using modified OECD TG 412. Chemosphere 2021, 262, 128330.

    Article  CAS  Google Scholar 

  15. Sun, R. L.; Xu, K.; Yu, L. L.; Pu, Y. Q.; **ong, F.; He, Y. H.; Huang, Q. C.; Tang, M. J.; Chen, M. J.; Yin, L. H. et al. Preliminary study on impacts of polystyrene microplastics on the hematological system and gene expression in bone marrow cells of mice. Ecotoxicol. Environ. Saf. 2021, 218, 112296.

    Article  CAS  Google Scholar 

  16. Adak, A.; Khan, M. R. An insight into gut microbiota and its functionalities. Cell. Mol. Life Sci. 2019, 76, 473–493.

    Article  CAS  Google Scholar 

  17. **, Y. X.; Lu, L.; Tu, W. Q.; Luo, T.; Fu, Z. W. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci. Total Environ. 2019, 649, 308–317.

    Article  CAS  Google Scholar 

  18. **e, S. L.; Zhou, A. G.; Wei, T. L.; Li, S. Y.; Yang, B.; Xu, G. H.; Zou, J. X. Nanoplastics induce more serious microbiota dysbiosis and inflammation in the gut of adult zebrafish than microplastics. Bull. Environ. Contam. Toxicol. 2021, 107, 640–650.

    Article  CAS  Google Scholar 

  19. Yan, H.; Baldridge, M. T.; King, K. Y. Hematopoiesis and the bacterial microbiome. Blood 2018, 132, 559–564.

    Article  CAS  Google Scholar 

  20. Richter, F. C.; Obba, S.; Simon, A. K. Local exchange of metabolites shapes immunity. Immunology 2018, 155, 309–319.

    Article  CAS  Google Scholar 

  21. Jani, P.; Halbert, G. W.; Langridge, J.; Florence, A. T. Nanoparticle uptake by the rat gastrointestinal mucosa: Quantitation and particle size dependency. J. Pharm. Pharmacol. 1990, 42, 821–826.

    Article  CAS  Google Scholar 

  22. Xu, P. F.; Wang, J. L.; Hong, F.; Wang, S.; **, X.; Xue, T. T.; Jia, L.; Zhai, Y. G. Melatonin prevents obesity through modulation of gut microbiota in mice. J. Pineal. Res. 2017, 62, e12399.

    Article  Google Scholar 

  23. Fan, G. H.; Zhu, T. Y.; Min, X. P.; **ong, J. Melatonin protects against PM2.5-induced lung injury by inhibiting ferroptosis of lung epithelial cells in a Nrf2-dependent manner. Ecotoxicol. Environ. Saf. 2021, 223, 112588.

    Article  CAS  Google Scholar 

  24. Li, D. C.; Zhang, R.; Cui, L. H.; Chu, C.; Zhang, H. Y.; Sun, H.; Luo, J.; Zhou, L. X.; Chen, L. P.; Cui, J. et al. Multiple organ injury in male C57BL/6J mice exposed to ambient particulate matter in a real-ambient PM exposure system in Shijiazhuang, China. Environ. Pollut. 2019, 248, 874–887.

    Article  CAS  Google Scholar 

  25. Hardeland, R. Melatonin and inflammation-story of a double-edged blade. J. Pineal. Res. 2018, 65, e12525.

    Article  Google Scholar 

  26. **g, J. R.; Zhang, L.; Han, L.; Wang, J. Y.; Zhang, W.; Liu, Z. Y.; Gao, A. Polystyrene micro-/nanoplastics induced hematopoietic damages via the crosstalk of gut microbiota, metabolites, and cytokines. Environ. Int. 2022, 161, 107131.

    Article  CAS  Google Scholar 

  27. Zhang, L.; **g, J. R.; Han, L.; Wang, J. Y.; Zhang, W.; Liu, Z. Y.; Gao, A. Characterization of gut microbiota, metabolism and cytokines in benzene-induced hematopoietic damage. Ecotoxicol. Environ. Saf. 2021, 228, 112956.

    Article  CAS  Google Scholar 

  28. Guo, X. L.; Zhang, L.; Wang, J. Y.; Zhang, W.; Ren, J.; Chen, Y. J.; Zhang, Y. L.; Gao, A. Plasma metabolomics study reveals the critical metabolic signatures for benzene-induced hematotoxicity. JCI Insight 2022, 7, e154999.

    Article  Google Scholar 

  29. Blacher, E.; Bashiardes, S.; Shapiro, H.; Rothschild, D.; Mor, U.; Dori-Bachash, M.; Kleimeyer, C.; Moresi, C.; Harnik, Y.; Zur, M. et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature 2019, 572, 474–480.

    Article  CAS  Google Scholar 

  30. Vethaak, A. D.; Legler, J. Microplastics and human health. Science 2021, 371, 672–674.

    Article  CAS  Google Scholar 

  31. Zheng, H. B.; Wang, J.; Wei, X. Y.; Chang, L.; Liu, S. Proinflammatory properties and lipid disturbance of polystyrene microplastics in the livers of mice with acute colitis. Sci. Total Environ. 2021, 750, 143085.

    Article  CAS  Google Scholar 

  32. Rafiee, M.; Dargahi, L.; Eslami, A.; Beirami, E.; Jahangiri-Rad, M.; Sabour, S.; Amereh, F. Neurobehavioral assessment of rats exposed to pristine polystyrene nanoplastics upon oral exposure. Chemosphere 2018, 193, 745–753.

    Article  CAS  Google Scholar 

  33. **, H. B.; Ma, T.; Sha, X. X.; Liu, Z. Y.; Zhou, Y.; Meng, X. N.; Chen, Y. B.; Han, X. D.; Ding, J. Polystyrene microplastics induced male reproductive toxicity in mice. J. Hazard. Mater. 2021, 401, 123430.

    Article  CAS  Google Scholar 

  34. Leslie, H. A.; van Velzen, M. J. M.; Brandsma, S. H.; Vethaak, A. D.; Garcia-Vallejo, J. J.; Lamoree, M. H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022, 163, 107199.

    Article  CAS  Google Scholar 

  35. Lv, Y. D.; Huang, Y. J.; Kong, M. Q.; Yang, Q.; Li, G. X. Multivariate correlation analysis of outdoor weathering behavior of polypropylene under diverse climate scenarios. Polym. Test. 2017, 64, 65–76.

    Article  CAS  Google Scholar 

  36. Yang, Q.; Zhang, S. Y.; Su, J.; Li, S.; Lv, X. C.; Chen, J.; Lai, Y. C.; Zhan, J. H. Identification of trace polystyrene nanoplastics down to 50 nm by the hyphenated method of filtration and surface-enhanced Raman spectroscopy based on silver nanowire membranes. Environ. Sci. Technol. 2022, 56, 10818–10828.

    Article  CAS  Google Scholar 

  37. Morgana, S.; Casentini, B.; Amalfitano, S. Uncovering the release of micro/nanoplastics from disposable face masks at times of COVID-19. J. Hazard. Mater. 2021, 419, 126507.

    Article  CAS  Google Scholar 

  38. Zhou, X. X.; He, S.; Gao, Y.; Chi, H. Y.; Wang, D. J.; Li, Z. C.; Yan, B. Quantitative analysis of polystyrene and poly(methyl methacrylate) nanoplastics in tissues of aquatic animals. Environ. Sci. Technol. 2021, 55, 3032–3040.

    Article  CAS  Google Scholar 

  39. Wang, L. X.; Xu, M.; Chen, J. M.; Zhang, X.; Wang, Q. S.; Wang, Y. X.; Cui, J. S.; Zhang, S. P. Distinct adverse outcomes and lipid profiles of erythrocytes upon single and combined exposure to cadmium and microplastics. Chemosphere 2022, 307, 135942.

    Article  CAS  Google Scholar 

  40. Zhao, L. T.; Shi, W. Y.; Hu, F. F.; Song, X. J.; Cheng, Z. J.; Zhou, J. H. Prolonged oral ingestion of microplastics induced inflammation in the liver tissues of C57BL/6J mice through polarization of macrophages and increased infiltration of natural killer cells. Ecotoxicol. Environ. Saf. 2021, 227, 112882.

    Article  CAS  Google Scholar 

  41. Hamed, M.; Soliman, H. A. M.; Osman, A. G. M.; Sayed, A. E. D. H. Assessment the effect of exposure to microplastics in Nile Tilapia (oreochromis niloticus) early juvenile: I. Blood biomarkers. Chemosphere 2019, 228, 345–350.

    Article  CAS  Google Scholar 

  42. Kim, J. H.; Yu, Y. B.; Choi, J. H. Toxic effects on bioaccumulation, hematological parameters, oxidative stress, immune responses and neurotoxicity in fish exposed to microplastics: A review. J. Hazard. Mater. 2021, 413, 125423.

    Article  CAS  Google Scholar 

  43. Meng, X.; Li, Y.; Li, S.; Zhou, Y.; Gan, R. Y.; Xu, D. P.; Li, H. B. Dietary sources and bioactivities of melatonin. Nutrients 2017, 9, 367.

    Article  Google Scholar 

  44. Wu, Y. L.; He, F.; Zhang, C. H.; Zhang, Q.; Su, X. L.; Zhu, X.; Liu, A.; Shi, W. D.; Lin, W. F.; **, Z. Q. et al. Melatonin alleviates titanium nanoparticles induced osteolysis via activation of butyrate/GPR109A signaling pathway. J. Nanobiotechnol. 2021, 19, 170.

    Article  Google Scholar 

  45. Lv, W. J.; Liu, C.; Yu, L. Z.; Zhou, J. H.; Li, Y.; **ong, Y.; Guo, A.; Chao, L. M.; Qu, Q.; Wei, G. W. et al. Melatonin alleviates neuroinflammation and metabolic disorder in DSS-induced depression rats. Oxid. Med. Cell. Longev. 2020, 2020, 1241894.

    Article  Google Scholar 

  46. Yin, J.; Li, Y. Y.; Han, H.; Chen, S.; Gao, J.; Liu, G.; Wu, X.; Deng, J. P.; Yu, Q. F.; Huang, X. et al. Melatonin reprogramming of gut microbiota improves lipid dysmetabolism in high-fat diet-fed mice. J. Pineal. Res. 2018, 65, e12524.

    Article  Google Scholar 

  47. Li, X. B.; Sun, H.; Li, B.; Zhang, X. W.; Cui, J.; Yun, J.; Yang, Y. P.; Zhang, L. E.; Meng, Q. T.; Wu, S. S. et al. Probiotics ameliorate colon epithelial injury induced by ambient ultrafine particles exposure. Adv. Sci. 2019, 6, 1900972.

    Article  CAS  Google Scholar 

  48. Jenq, R. R.; Ubeda, C.; Taur, Y.; Menezes, C. C.; Khanin, R.; Dudakov, J. A.; Liu, C.; West, M. L.; Singer, N. V.; Equinda, M. J. et al. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J. Exp. Med. 2012, 209, 903–911.

    Article  CAS  Google Scholar 

  49. Vossen, J. M.; Heidt, P. J.; van den Berg, H.; Gerritsen, E. J. A.; Hermans, J.; Dooren, L. J. Prevention of infection and graft-versus-host disease by suppression of intestinal microflora in children treated with allogeneic bone marrow transplantation. Eur. J. Clin. Microbiol. Infect. Dis. 1990, 9, 14–23.

    Article  CAS  Google Scholar 

  50. Agus, A.; Planchais, J.; Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 2018, 23, 716–724.

    Article  CAS  Google Scholar 

  51. Inoue, K.; Yan, Q.; Arah, O. A.; Paul, K.; Walker, D. I.; Jones, D. P.; Ritz, B. Air pollution and adverse pregnancy and birth outcomes: Mediation analysis using metabolomic profiles. Curr. Environ. Health Rep. 2020, 7, 231–242.

    Article  Google Scholar 

  52. Marshall, R. P.; Droste, J. N.; Giessing, J.; Kreider, R. B. Role of creatine supplementation in conditions involving mitochondrial dysfunction: A narrative review. Nutrients 2022, 14, 529.

    Article  CAS  Google Scholar 

  53. Peng, M. X.; Ren, J.; **g, Y. P.; Jiang, X. K.; **ao, Q. L.; Huang, J. P.; Tao, Y. H.; Lei, L.; Wang, X.; Yang, Z. L. et al. Tumour-derived small extracellular vesicles suppress CD8+ T cell immune function by inhibiting SLC6A8-mediated creatine import in NPM1-mutated acute myeloid leukaemia. J. Extracell. Vesicles 2021, 10, e12168.

    Article  CAS  Google Scholar 

  54. Mossmann, D.; Park, S.; Hall, M. N. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat. Rev. Cancer 2018, 18, 744–757.

    Article  CAS  Google Scholar 

  55. Liu, L.; Inoki, A.; Fan, K.; Mao, F. B.; Shi, G. J.; **, X.; Zhao, M. L.; Ney, G.; Jones, M.; Sun, S. Y. et al. ER-associated degradation preserves hematopoietic stem cell quiescence and self-renewal by restricting mTOR activity. Blood 2020, 136, 2975–2986.

    Article  CAS  Google Scholar 

  56. van Weeghel, M.; Abdurrachim, D.; Nederlof, R.; Argmann, C. A.; Houtkooper, R. H.; Hagen, J.; Nabben, M.; Denis, S.; Ciapaite, J.; Kolwicz, S. C. et al. Increased cardiac fatty acid oxidation in a mouse model with decreased malonyl-CoA sensitivity of CPT1B. Cardiovasc. Res. 2018, 114, 1324–1334.

    Article  CAS  Google Scholar 

  57. Wang, L.; Chen, P. J.; **ao, W. H. β-Hydroxybutyrate as an anti-aging metabolite. Nutrients 2021, 13, 3420.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Nos. 82073520 and 81773397), the Bei**g Natural Science Program and Sci-entific Research Key Program of Bei**g Municipal Commission of Ed-ucation (No. KZ201810025032), and the Support Project of High-level Teachers in Bei**g Municipal Universities in the Period of 13th Five-year Plan (No. CIT&TCD 20170323).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai Gao.

Electronic Supplementary Material

12274_2022_5032_MOESM1_ESM.pdf

Melatonin and probiotics ameliorate nanoplastics-induced hematopoietic injury by modulating the gut microbiota-metabolism

Supplementary material, approximately 76.9 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., **g, J., Han, L. et al. Melatonin and probiotics ameliorate nanoplastics-induced hematopoietic injury by modulating the gut microbiota-metabolism. Nano Res. 16, 2885–2894 (2023). https://doi.org/10.1007/s12274-022-5032-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5032-9

Keywords

Navigation