Log in

Building the bridge of small organic molecules to porous carbons via ionic solid principle

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Replacing traditional polymer-based precursors with small molecules is a promising pathway toward facile and controllable preparation of porous carbons but remains a prohibitive challenge because of the high volatility of small molecules. Herein, a simple, general, and controllable method is reported to prepare porous carbons by converting small organic molecules into organic molecular salts followed by pyrolysis. The robust electrostatic force holding organic molecular salts together leads to negligible volatility and thus ensures the formation of carbons under high-temperature pyrolysis. Meanwhile, metal moieties in organic molecular salts can be evolved into in-situ templates or activators during pyrolysis to create nanopores. The modular nature of organic molecular salts allows easy control of the porosity and chemical do** of carbons at a molecular level. The sulfur-doped carbon prepared by the ionic solid strategy can serve as robust support to prepare small-sized intermetallic PtCo catalysts, which exhibit a high mass activity of 1.62 A·mgPt−1 in catalyzing oxygen reduction reaction for fuel cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhai, Y. P.; Dou, Y. Q.; Zhao, D. Y.; Fulvio, P. F.; Mayes, R. T.; Dai, S. Carbon materials for chemical capacitive energy storage. Adv. Mater. 2011, 23, 4828–4850.

    Article  CAS  Google Scholar 

  2. Su, D. S.; Perathoner, S.; Centi, G. Nanocarbons for the development of advanced catalysts. Chem. Rev. 2013, 113, 5782–5816.

    Article  CAS  Google Scholar 

  3. Borchardt, L.; Zhu, Q. L.; Casco, M. E.; Berger, R.; Zhuang, X. D.; Kaskel, S.; Feng, X. L.; Xu, Q. Toward a molecular design of porous carbon materials. Mater. Today 2017, 20, 592–610.

    Article  CAS  Google Scholar 

  4. Benzigar, M. R.; Talapaneni, S. N.; Joseph, S.; Ramadass, K.; Singh, G.; Scaranto, J.; Ravon, U.; Al-Bahily, K.; Vinu, A. Recent advances in functionalized micro and mesoporous carbon materials: Synthesis and applications. Chem. Soc. Rev. 2018, 47, 2680–2721.

    Article  CAS  Google Scholar 

  5. Paraknowitsch, J. P.; Thomas, A. Do** carbons beyond nitrogen: An overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 2013, 6, 2839–2855.

    Article  CAS  Google Scholar 

  6. Perovic, M.; Qin, Q.; Oschatz, M. From molecular precursors to nanoparticles—Tailoring the adsorption properties of porous carbon materials by controlled chemical functionalization. Adv. Funct. Mater. 2020, 30, 1908371.

    Article  CAS  Google Scholar 

  7. Stein, A.; Wang, Z. Y.; Fierke, M. A. Functionalization of porous carbon materials with designed pore architecture. Adv. Mater. 2009, 21, 265–293.

    Article  CAS  Google Scholar 

  8. Sevilla, M.; Mokaya, R. Energy storage applications of activated carbons: Supercapacitors and hydrogen storage. Energy Environ. Sci. 2014, 7, 1250–1280.

    Article  CAS  Google Scholar 

  9. Dutta, S.; Bhaumik, A.; Wu, K. C. W. Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications. Energy Environ. Sci. 2014, 7, 3574–3592.

    Article  CAS  Google Scholar 

  10. Wang, H.; Shao, Y.; Mei, S. L.; Lu, Y.; Zhang, M.; Sun, J. K.; Matyjaszewski, K.; Antonietti, M.; Yuan, J. Y. Polymer-derived heteroatom-doped porous carbon materials. Chem. Rev. 2020, 120, 9363–9419.

    Article  CAS  Google Scholar 

  11. Ito, Y.; Christodoulou, C.; Nardi, M. V.; Koch, N.; Kläui, M.; Sachdev, H.; Müllen, K. Tuning the magnetic properties of carbon by nitrogen do** of its graphene domains. J. Am. Chem. Soc. 2015, 137, 7678–7685.

    Article  CAS  Google Scholar 

  12. Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424–428.

    Article  CAS  Google Scholar 

  13. Chang, Y. Q.; Antonietti, M.; Fellinger, T. P. Synthesis of nanostructured carbon through ionothermal carbonization of common organic solvents and solutions. Angew. Chem., Int. Ed. 2015, 54, 5507–5512.

    Article  CAS  Google Scholar 

  14. Lee, J. S.; Wang, X. Q.; Luo, H. M.; Baker, G. A.; Dai, S. Facile ionothermal synthesis of microporous and mesoporous carbons from task specific ionic liquids. J. Am. Chem. Soc. 2009, 131, 4596–4597.

    Article  CAS  Google Scholar 

  15. Wang, X. Q.; Dai, S. Ionic liquids as versatile precursors for functionalized porous carbon and carbon-oxide composite materials by confined carbonization. Angew. Chem. 2010, 122, 6814–6818.

    Article  Google Scholar 

  16. Paraknowitsch, J. P.; Zhang, J.; Su, D. S.; Thomas, A.; Antonietti, M. Ionic liquids as precursors for nitrogen-doped graphitic carbon. Adv. Mater. 2010, 22, 87–92.

    Article  CAS  Google Scholar 

  17. Fellinger, T. P.; Thomas, A.; Yuan, J. Y.; Antonietti, M. 25th anniversary article: “cooking carbon with salt”: Carbon materials and carbonaceous frameworks from ionic liquids and poly(ionic liquid)s. Adv. Mater. 2013, 25, 5838–5855.

    Article  CAS  Google Scholar 

  18. Zhang, S. G.; Miran, M. S.; Ikoma, A.; Dokko, K.; Watanabe, M. Protic ionic liquids and salts as versatile carbon precursors. J. Am. Chem. Soc. 2014, 136, 1690–1693.

    Article  CAS  Google Scholar 

  19. Zhang, S. G.; Dokko, K.; Watanabe, M. Direct synthesis of nitrogen-doped carbon materials from protic ionic liquids and protic salts: Structural and physicochemical correlations between precursor and carbon. Chem. Mater. 2014, 26, 2915–2926.

    Article  CAS  Google Scholar 

  20. Zhang, S. G.; Tsuzuki, S.; Ueno, K.; Dokko, K.; Watanabe, M. Upper limit of nitrogen content in carbon materials. Angew. Chem., Int. Ed. 2015, 54, 1302–1306.

    Article  CAS  Google Scholar 

  21. Wu, Z. Y.; Xu, S. L.; Yan, Q. Q.; Chen, Z. Q.; Ding, Y. W.; Li, C.; Liang, H. W.; Yu, S. H. Transition metal-assisted carbonization of small organic molecules toward functional carbon materials. Sci. Adv. 2018, 4, eaat0788.

    Article  CAS  Google Scholar 

  22. Liang, H. W.; Brüller, S.; Dong, R. H.; Zhang, J.; Feng, X. L.; Müllen, K. Molecular metal-Nx centres in porous carbon for electrocatalytic hydrogen evolution. Nat. Commun. 2015, 6, 7992.

    Article  CAS  Google Scholar 

  23. Lewis, I. C. Chemistry of carbonization. Carbon 1982, 20, 519–529.

    Article  CAS  Google Scholar 

  24. Sevilla, M.; Díez, N.; Fuertes, A. B. More sustainable chemical activation strategies for the production of porous carbons. ChemSusChem 2021, 14, 94–117.

    Article  CAS  Google Scholar 

  25. Wang, C. H.; Kim, J.; Tang, J.; Kim, M.; Lim, H.; Malgras, V.; You, J.; Xu, Q.; Li, J. S.; Yamauchi, Y. New strategies for novel MOF-derived carbon materials based on nanoarchitectures. Chem 2020, 6, 19–40.

    Article  CAS  Google Scholar 

  26. Tong, L.; Zhang, L. L.; Wang, Y. C.; Wan, L. Y.; Yan, Q. Q.; Hua, C.; Jiao, C. J.; Zhou, Z. Y.; Ding, Y. W.; Liu, B. et al. Hierarchically porous carbons derived from nonporous coordination polymers. ACS Appl. Mater. Interfaces 2020, 12, 25211–25220.

    Article  CAS  Google Scholar 

  27. Hussain, T.; Nie, P. F.; Hu, B.; Shang, X. H.; Yang, J. M.; Li, J. Y. Facile synthesis of Mg-formate MOF-derived mesoporous carbon for fast capacitive deionization. J. Mater. Sci. 2021, 56, 10282–10292.

    Article  CAS  Google Scholar 

  28. Luo, M. C.; Zhao, Z. L.; Zhang, Y. L.; Sun, Y. J.; **ng, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y. N. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 2019, 574, 81–85.

    Article  CAS  Google Scholar 

  29. Lin, F. X.; Lv, F.; Zhang, Q. H.; Luo, H.; Wang, K.; Zhou, J. H.; Zhang, W. Y.; Zhang, W. S.; Wang, D. W.; Gu, L. et al. Local coordination regulation through tuning atomic-scale cavities of Pd metallene toward efficient oxygen reduction electrocatalysis. Adv. Mater. 2022, 34, 2202084.

    Article  CAS  Google Scholar 

  30. Wang, C. Y.; Spendelow, J. S. Recent developments in Pt-Co catalysts for proton-exchange membrane fuel cells. Curr. Opin. Electrochem. 2021, 28, 100715.

    Article  CAS  Google Scholar 

  31. Yan, Y. C.; Du, J. S.; Gilroy, K. D.; Yang, D. R.; **a, Y. N.; Zhang, H. Intermetallic nanocrystals: Syntheses and catalytic applications. Adv. Mater. 2017, 29, 1605997.

    Article  Google Scholar 

  32. Wang, D. L.; **n, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruna, H. D. Structurally ordered intermetallic platinum-cobalt core—shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.

    Article  CAS  Google Scholar 

  33. Yang, C. L.; Wang, L. N.; Yin, P.; Liu, J. Y.; Chen, M. X.; Yan, Q. Q.; Wang, Z. S.; Xu, S. L.; Chu, S. Q.; Cui, C. H. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 2021, 374, 459–464.

    Article  CAS  Google Scholar 

  34. Yin, P.; Luo, X.; Ma, Y. F.; Chu, S. Q.; Chen, S.; Zheng, X. S.; Lu, J. L.; Wu, X. J.; Liang, H. W. Sulfur stabilizing metal nanoclusters on carbon at high temperatures. Nat. Commun. 2021, 12, 3135.

    Article  CAS  Google Scholar 

  35. Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. C. Modification of the surface electronic and chemical properties of Pt (111) by subsurface 3d transition metals. J. Chem. Phys. 2004, 120, 10240–10246.

    Article  CAS  Google Scholar 

  36. Mavrikakis, M.; Hammer, B.; Nørskov, J. K. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 1998, 81, 2819–2822.

    Article  Google Scholar 

  37. Antolini, E. Alloy vs. intermetallic compounds: Effect of the ordering on the electrocatalytic activity for oxygen reduction and the stability of low temperature fuel cell catalysts. Appl. Catal. B Environ. 2017, 217, 201–213.

    Article  CAS  Google Scholar 

  38. Han, B. H.; Carlton, C. E.; Kongkanand, A.; Kukreja, R. S.; Theobald, B. R.; Gan, L.; O’Malley, R.; Strasser, P.; Wagner, F. T.; Shao-Horn, Y. Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells. Energy Environ. Sci. 2015, 8, 258–266.

    Article  CAS  Google Scholar 

  39. Li, J. R.; Sharma, S.; Liu, X. M.; Pan, Y. T.; Spendelow, J. S.; Chi, M. F.; Jia, Y. K.; Zhang, P.; Cullen, D. A.; **, Z. et al. Hard-magnet L10-CoPt nanoparticles advance fuel cell catalysis. Joule 2019, 3, 124–135.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the funding support from the National Key Research and Development Program of China (No. 2018YFA0702001), the National Natural Science Foundation of China (No. 22071225), the Fundamental Research Funds for the Central Universities (No. WK2060190103), the Joint Funds from Hefei National Synchrotron Radiation Laboratory (No. KY2060000175), the Natural Science Foundation of Guangdong Province (No. 2021A1515012356), the Research Grant for Scientific Platform and Project of Guangdong Provincial Education office (No. 2019KTSCX151), Shenzhen Government’s Plan of Science and Technology (No. JCYJ20180305125247308), and the Collaborative Innovation Program of Hefei Science Center of CAS (No. 2021HSC-CIP015). L. D. F. acknowledges the support from the Instrumental Analysis Center of Shenzhen University (**li Campus).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liangdong Fan or Hai-Wei Liang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, L., Yang, QQ., Li, S. et al. Building the bridge of small organic molecules to porous carbons via ionic solid principle. Nano Res. 16, 80–87 (2023). https://doi.org/10.1007/s12274-022-4997-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4997-8

Keywords

Navigation