Log in

Rational design of asymmetric atomic Ni-P1N3 active sites for promoting electrochemical CO2 reduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The atomic-level interfacial regulation of single metal sites through heteroatom do** can significantly improve the characteristics of the catalyst and obtain surprising activity. Herein, nickel single-site catalysts (SSCs) with dual-coordinated phosphorus and nitrogen atoms were developed and confirmed (denoted as Ni-PxNy, x = 1, 2 and y = 3, 2). In CO2 reduction reaction (CO2RR), the CO current density on Ni-PxNy was significantly higher than that of Ni-N4 catalyst without phosphorus modification. Besides, Ni-P1N3 performed the highest CO Faradaic efficiency (FECO) of 85.0%–98.0% over a wide potential range of −0.65 to −0.95 V (vs. the reversible hydrogen electrode (RHE)). Experimental and theoretical results revealed that the asymmetric Ni-P1N3 site was beneficial to CO2 intermediate adsorption/desorption, thereby accelerating the reaction kinetics and boosting CO2RR activity. This work provides an effective method for preparing well-defined dual-coordinated SSCs to improve catalytic performance, targetting to CO2RR applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T.; Sargent, E. H. What would it take for renewably powered electrosynthesis to displace petrochemical processes. Science 2019, 364, eaav3506.

    Article  CAS  Google Scholar 

  2. He, Q.; Liu, D. B.; Lee, J. H.; Liu, Y. M.; **e, Z. H.; Hwang, S.; Kattel, S.; Song, L.; Chen, J. G. Electrochemical conversion of CO2 to syngas with controllable CO/H2 ratios over Co and Ni single-atom catalysts. Angew. Chem., Int. Ed. 2020, 59, 3033–3037.

    Article  CAS  Google Scholar 

  3. Jiang, Z. L.; Sun, W. M.; Shang, H. S.; Chen, W. X.; Sun, T. T.; Li, H. J.; Dong, J. C.; Zhou, J.; Li, Z.; Wang, Y. et al. Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions. Energy Environ. Sci. 2019, 12, 3508–3514.

    Article  CAS  Google Scholar 

  4. Hinogami, R.; Yotsuhashi, S.; Deguchi, M.; Zenitani, Y.; Hashiba, H.; Yamada, Y. Electrochemical reduction of carbon dioxide using a copper rubeanate metal organic framework. ECS Electrochem. Lett. 2012, 1, H17–H19.

    Article  CAS  Google Scholar 

  5. Kornienko, N.; Zhao, Y. B.; Kley, C. S.; Zhu, C. H.; Kim, D.; Lin, S.; Chang, C. J.; Yaghi, O. M.; Yang, P. D. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 2015, 137, 14129.

    Article  CAS  Google Scholar 

  6. Kang, X. C.; Zhu, Q. G.; Sun, X. F.; Hu, J. Y.; Zhang, J. L.; Liu, Z. M.; Han, B. X. Highly efficient electrochemical reduction of CO2 to CH4 in an ionic liquid using a metal-organic framework cathode. Chem. Sci. 2016, 7, 266–273.

    Article  CAS  Google Scholar 

  7. Wang, L. G.; Wang, D. S.; Li, Y. D. Single-atom catalysis for carbon neutrality. Carbon Energy, in press, https://doi.org/10.1002/cey2.194.

  8. Zhu, C. Z.; Fu, S. F.; Shi, Q. R.; Du, D.; Lin, Y. H. Single-atom electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 13944–13960.

    Article  CAS  Google Scholar 

  9. Zhou, D. N.; Li, X. Y.; Shang, H. S.; Qin, F. J.; Chen, W. X. Atomic regulation of metal-organic framework derived carbon-based single-atom catalysts for the electrochemical CO2 reduction reaction. J. Mater. Chem. A 2021, 9, 23382–23418.

    Article  CAS  Google Scholar 

  10. Jiang, Z. L.; Wang, T.; Pei, J. J.; Shang, H. S.; Zhou, D. N.; Li, H. J.; Dong, J. C.; Wang, Y.; Cao, R.; Zhuang, Z. B. et al. Discovery of main group single Sb-N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ. Sci. 2020, 13, 2856–2863.

    Article  CAS  Google Scholar 

  11. Wang, Y.; Wang, M. Y.; Zhang, Z. S.; Wang, Q.; Jiang, Z.; Lucero, M.; Zhang, X.; Li, X. X.; Gu, M.; Feng, Z. X. et al. Phthalocyanine precursors to construct atomically dispersed iron electrocatalysts. ACS Catal. 2019, 9, 6252–6261.

    Article  CAS  Google Scholar 

  12. Wang, B. Q.; Chen, S. H.; Zhang, Z. D.; Wang, D. S. Low-dimensional material supported single-atom catalysts for electrochemical CO2 reduction. SmartMat 2022, 3, 84–110.

    Article  CAS  Google Scholar 

  13. Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

    Article  CAS  Google Scholar 

  14. Chen, Z. P.; Zhang, X. X.; Liu, W.; Jiao, M. Y.; Mou, K. W.; Zhang, X. P.; Liu, L. C. Amination strategy to boost the CO2 electroreduction current density of M-N/C single-atom catalysts to the industrial application level. Energy Environ. Sci. 2021, 14, 2349–2356.

    Article  CAS  Google Scholar 

  15. Yang, H. B.; Hung, S. F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. Y.; Cai, W. Z.; Chen, R. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy, 2018, 3, 140–147.

    Article  CAS  Google Scholar 

  16. Li, R. Z.; Wang, D. S. Understanding the structure—performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

    Article  CAS  Google Scholar 

  17. Hou, C. C.; Wang, H. F.; Li, C. X.; Xu, Q. From metal-organic frameworks to single/dual-atom and cluster metal catalysts for energy applications. Energy Environ. Sci. 2020, 13, 1658–1693.

    Article  CAS  Google Scholar 

  18. Gu, J.; Hsu, C. S.; Bai, L. C.; Chen, H. M.; Hu, X. L. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019, 364, 1091–1094.

    Article  CAS  Google Scholar 

  19. Bi, W. T.; Li, X. G.; You, R.; Chen, M. L.; Yuan, R. L.; Huang, W. X.; Wu, X. J.; Chu, W. S.; Wu, C. Z.; **e, Y. Surface immobilization of transition metal ions on nitrogen-doped graphene realizing high-efficient and selective CO2 reduction. Adv. Mater. 2018, 30, 1706617.

    Article  Google Scholar 

  20. Zhang, Z.; **ao, J. P.; Chen, X. J.; Yu, S.; Yu, L.; Si, R.; Wang, Y.; Wang, S. H.; Meng, X. G.; Wang, Y. et al. Reaction mechanisms of well-defined metal-N4 sites in electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2018, 57, 16339–16342.

    Article  CAS  Google Scholar 

  21. Zhang, B. X.; Zhang, J. L.; Shi, J. B.; Tan, D. X.; Liu, L. F.; Zhang, F. Y.; Lu, C.; Su, Z. Z.; Tan, X. N.; Cheng, X. Y. et al. Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nat. Commun. 2019, 10, 2980.

    Article  Google Scholar 

  22. **, D.; Li, J.; Low, J.; Mao, K.; Long, R.; Li, J.; Dai, Z.; Shao, T.; Zhong, Y.; Li, Y. et al. Limiting the uncoordinated N species in M—Nx single-atom catalysts toward electrocatalytic CO2 reduction in broad voltage range. Adv. Mater. 2022, 34, 2104090.

    Article  CAS  Google Scholar 

  23. Li, J. K.; Pršlja, P.; Shinagawa, T.; Fernández, A. J. M.; Krumeich, F.; Artyushkova, K.; Atanassov, P.; Zitolo, A.; Zhou, Y. C.; García-Muelas, R. et al. Volcano trend in electrocatalytic CO2 reduction activity over atomically dispersed metal sites on nitrogen-doped carbon. ACS Catal. 2019, 9, 10426–10439.

    Article  CAS  Google Scholar 

  24. Shang, H. S.; Wang, T.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Wang, Y.; Li, H. J.; Dong, J. C.; Zhuang, Z. B.; Chen, W. X. et al. Design of a single-atom indiumδ+−N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem., Int. Ed. 2020, 59, 22465.

    Article  CAS  Google Scholar 

  25. Zhao, C. M.; Dai, X. Y.; Yao, T.; Chen, W. X.; Wang, X. Q.; Wang, J.; Yang, J.; Wei, S. Q.; Wu, Y. E.; Li, Y. D. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 2017, 139, 8078–8081.

    Article  CAS  Google Scholar 

  26. Yang, J.; Qiu, Z. Y.; Zhao, C. M.; Wei, W. C.; Chen, W. X.; Li, Z. J.; Qu, Y. T.; Dong, J. C.; Luo, J.; Li, Z. Y. et al. In-situ thermal atomization to convert supported nickel nanoparticles into surface-bound nickel single-atom catalysts. Angew. Chem., Int. Ed. 2018, 57, 14095–14100.

    Article  CAS  Google Scholar 

  27. Guan, A. X.; Chen, Z.; Quan, Y. L.; Peng, C.; Wang, Z. Q.; Sham, T. K.; Yang, C.; Ji, Y. L.; Qian, L. P.; Xu, X. et al. Boosting CO2 electroreduction to CH4 via tuning neighboring single-copper sites. ACS Energy Lett. 2020, 5, 1044–1053.

    Article  CAS  Google Scholar 

  28. Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X. et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2018, 57, 1944–1948.

    Article  CAS  Google Scholar 

  29. Gong, Y. N.; Jiao, L.; Qian, Y. Y.; Pan, C. Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S. H.; Jiang, H. L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 2705–2709.

    Article  CAS  Google Scholar 

  30. Sun, Z. Y.; Hu, Y. N.; Zhou, D. N.; Sun, M. R.; Wang, S.; Chen, W. X. Factors influencing the performance of copper-bearing catalysts in the CO2 reduction system. ACS Energy Lett. 2021, 6, 4022.

    Article  Google Scholar 

  31. Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

    Article  CAS  Google Scholar 

  32. Zhuang, J. H.; Wang, D. S. Current advances and future challenges of single-atom catalysis. Chem. J. Chin. Univ. 2022, 43, 20220043.

    Google Scholar 

  33. Hou, Y.; Qiu, M.; Kim, M. G.; Liu, P.; Nam, G.; Zhang, T.; Zhuang, X. D.; Yang, B.; Cho, J.; Chen, M. et al. Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 2019, 10, 1392.

    Article  Google Scholar 

  34. Yuan, K.; Lu, C. B.; Sfaelou, S.; Liao, X. X.; Zhuang, X. D.; Chen, Y. W.; Scherf, U.; Feng, X. L. In-situ nanoarchitecturing and active-site engineering toward highly efficient carbonaceous electrocatalysts. Nano Energy 2019, 59, 207–215.

    Article  CAS  Google Scholar 

  35. Guo, Y. Y.; Yuan, P. F.; Zhang, J. N.; Hu, Y. F.; Amiinu, I. S.; Wang, X.; Zhou, J. G.; **a, H. C.; Song, Z. B.; Xu, Q. et al. Carbon nanosheets containing discrete Co-Nx-By-C active sites for efficient oxygen electrocatalysis and rechargeable Zn-air batteries. ACS Nano 2018, 12, 1894–1901.

    Article  CAS  Google Scholar 

  36. Zhang, J. T.; Zhang, M.; Zeng, Y.; Chen, J. S.; Qiu, L. X.; Zhou, H.; Sun, C. J.; Yu, Y.; Zhu, C. Z.; Zhu, Z. H. Single Fe atom on hierarchically porous S, N-codoped nanocarbon derived from porphyra enable boosted oxygen catalysis for rechargeable Zn-air batteries. Small 2019, 15, 1900307.

    Article  Google Scholar 

  37. Zhang, Z. P.; Gao, X. J.; Dou, M. L.; Ji, J.; Wang, F. Biomass derived N-doped porous carbon supported single Fe atoms as superior electrocatalysts for oxygen reduction. Small 2017, 13, 1604290.

    Article  Google Scholar 

  38. Liu, D. X.; Wang, B.; Li, H. G.; Huang, S. F.; Liu, M. M.; Wang, J.; Wang, Q. J.; Zhang, J. J.; Zhao, Y. F. Distinguished Zn, Co-Nx-C-Sy active sites confined in dentric carbon for highly efficient oxygen reduction reaction and flexible Zn-air batteries. Nano Energy 2019, 58, 277–283.

    Article  CAS  Google Scholar 

  39. Zhang, E. H.; Tao, L.; An, J. K.; Zhang, J. W.; Meng, L. Z.; Zheng, X. B.; Wang, Y.; Li, N.; Du, S. X.; Zhang, J. T. et al. Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem. 2022, 134, e202117347.

    Google Scholar 

  40. Fan, M. M.; Cui, J. W.; Wu, J. J.; Vajtai, R.; Sun, D. P.; Ajayan, P. M. Improving the catalytic activity of carbon-supported single atom catalysts by polynary metal or heteroatom do**. Small 2020, 16, 1906782.

    Article  CAS  Google Scholar 

  41. Yan, H.; Cheng, H.; Yi, H.; Lin, Y.; Yao, T.; Wang, C. L.; Li, J. J.; Wei, S. Q.; Lu, J. L. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: Remarkable performance in selective hydrogenation of 1, 3-butadiene. J. Am. Chem. Soc. 2015, 137, 10484–10487.

    Article  CAS  Google Scholar 

  42. Yuan, K.; Lützenkirchen-Hecht, D.; Li, L. B.; Shuai, L.; Li, Y. Z.; Cao, R.; Qiu, M.; Zhuang, X. D.; Leung, M. K. H.; Chen, Y. W. et al. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: Nitrogen and phosphorus dual coordination. J. Am. Chem. Soc. 2020, 142, 2404–2412.

    Article  CAS  Google Scholar 

  43. Wan, J. W.; Zhao, Z. H.; Shang, H. S.; Peng, B.; Chen, W. X.; Pei, J. J.; Zheng, L. R.; Dong, J. C.; Cao, R.; Sarangi, R. et al. In-situ phosphatizing of triphenylphosphine encapsulated within metal-organic frameworks to design atomic Co1-P1N3 interfacial structure for promoting catalytic performance. J. Am. Chem. Soc. 2020, 142, 8431–8439.

    Article  CAS  Google Scholar 

  44. Zhu, P.; **ong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    Article  CAS  Google Scholar 

  45. Zhu, X. F.; Tan, X.; Wu, K. H.; Chiang, C. L.; Lin, Y. C.; Lin, Y. G.; Wang, D. W.; Smith, S.; Lu, X. Y.; Amal, R. N, P co–coordinated Fe species embedded in carbon hollow spheres for oxygen electrocatalysis. J. Mater. Chem. A 2019, 7, 14732.

    Article  CAS  Google Scholar 

  46. Chen, J. G. NEXAFS investigations of transition metal oxides, nitrides, carbides, sulfides and other interstitial compounds. Surf. Sci. Rep. 1997, 30, 1–152.

    Article  CAS  Google Scholar 

  47. Sun, X. H.; Tuo, Y. X.; Ye, C. L.; Chen, C.; Lu, Q.; Li, G. N.; Jiang, P.; Chen, S. H.; Zhu, P.; Ma, M. et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction. Angew. Chem., Int. Ed. 2021, 60, 23614–23618.

    Article  CAS  Google Scholar 

  48. Sun, X. H.; Sun, L.; Li, G. N.; Tuo, Y. X.; Ye, C. L.; Yang, J. R.; Low, J. X.; Yu, X.; Bitter, J. H.; Lei, Y. P. et al. Phosphorus tailors the d-band center of copper atomic sites for efficient CO2 photoreduction under visible-light irradiation. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/ANIE.202207677.

  49. Zhao, Y. S.; Yang, N. L.; Yao, H. Y.; Liu, D. B.; Song, L.; Zhu, J.; Li, S. Z.; Gu, L.; Lin, K. F.; Wang, D. Stereodefined codo** of sp-N and S atoms in few-layer graphdiyne for oxygen evolution reaction. J. Am. Chem. Soc. 2019, 141, 7240–7244.

    Article  CAS  Google Scholar 

  50. Ren, W. H.; Tan, X.; Jia, C.; Krammer, A.; Sun, Q.; Qu, J. T.; Smith, S. C.; Schueler, A.; Hu, X. L.; Zhao, C. Electronic regulation of nickel single atoms by confined nickel nanoparticles for energy-efficient CO2 electroreduction. Angew. Chem., Int. Ed. 2022, 134, e202203335.

    Article  Google Scholar 

  51. **ong, X. Y.; Mao, C. L.; Yang, Z. J.; Zhang, Q. H.; Waterhouse, G. I. N.; Gu, L.; Zhang, T. R. Photocatalytic CO2 reduction to CO over Ni single atoms supported on defect-rich zirconia. Adv. Energy Mater. 2020, 10, 2002928.

    Article  CAS  Google Scholar 

  52. Ji, W. J.; Zhan, C. H.; Li, D. Y.; Xu, Y.; Zhang, Y.; Wang, L.; Liu, L. B.; Wang, Y.; Chen, W. X.; Geng, H. B. et al. Phase and interface engineering of nickel carbide nanobranches for efficient hydrogen oxidation catalysis. J. Mater. Chem. A, 2021, 9, 26323–26329.

    Article  CAS  Google Scholar 

  53. Su, X. Z.; Jiang, Z. L.; Zhou, J.; Liu, H. J.; Zhou, D. N.; Shang, H. S.; Ni, X. M.; Peng, Z.; Yang, F.; Chen, W. X. et al. Complementary operando spectroscopy identification of in-situ generated metastable charge-asymmetry Cu2-CuN3 clusters for CO2 reduction to ethanol. Nat Commun. 2022, 13, 1322.

    Article  CAS  Google Scholar 

  54. Fu, H. Q.; Liu, J. X.; Bedford, N. M.; Wang, Y.; Sun, J.; Zou, Y.; Dong, M. Y.; Wright, J.; Diao, H.; Liu, P. R. et al. Synergistic Cr2O3@Ag heterostructure enhanced electrocatalytic CO2 reduction to CO. Adv. Mater. 2022, 34, 2202854.

    Article  CAS  Google Scholar 

  55. **g, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

    Article  Google Scholar 

  56. Liang, S. Y.; Huang, L.; Gao, Y. S.; Wang, Q.; Liu, B. Electrochemical reduction of CO2 to CO over transition metal/N-doped carbon catalysts: The active sites and reaction mechanism. Adv. Sci. (Weinh.) 2021, 8, 2102886.

    CAS  Google Scholar 

  57. Wang, T.; Abild-Pedersen, F. Achieving industrial ammonia synthesis rates at near-ambient conditions through modified scaling relations on a confined dual site. Proc. Natl. Acad. Sci. USA 2021, 118, e2106527118.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Bei**g Natural Science Foundation (No. 2212018), China National Petroleum Corporation (CNPC) Innovation Found (No. 2021DQ02-0202), and the National Natural Science Foundation of China (No. 51902013). The authors thank the BL14W1 in the Shanghai Synchrotron Radiation Facility (SSRF), and BL10B and BL12B in the National Synchrotron Radiation Laboratory (NSRL) for help with characterizations. T. W. also acknowledges the start-up fund of Westlake University and Westlake University High Performance Computing (HPC) Center for computation support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhuo Chen, Tao Wang or Binbin Jia.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, M., Chen, Z., Sun, Z. et al. Rational design of asymmetric atomic Ni-P1N3 active sites for promoting electrochemical CO2 reduction. Nano Res. 16, 2170–2176 (2023). https://doi.org/10.1007/s12274-022-4969-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4969-z

Keywords

Navigation