Log in

Amphoteric covalent organic framework as single Li+ superionic conductor in all-solid-state

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As a novel class of porous crystalline solids, covalent organic frameworks (COFs) based electrolyte can combine the advantages of both inorganic and polymer electrolytes, leading to such as higher structural stability to inhibit lithium dendrites and better processing facility for improving interfacial contact. However, the ionic components of Li salt tend to be closely associated in the form of ion pairs or even ionic aggregates in the channel of COFs due to strong coulombic interactions, thus resulting in slow ionic diffusion dynamics and low ionic conductivity. Herein, we successfully designed and synthesized a novel single-ion conducting nitrogen hybrid conjugated skeleton (NCS) as all solid electrolyte, whose backbone is consisted with triazine and piperazine rings. A loose bonding between the triazine rings and cations would lower the energy barrier during ions transfer, and electrostatic forces with piperazine rings could “anchor” anions to increase the selectivity during ions transfer. Thus, the NCS-electrolyte exhibits excellent room temperature lithium-ion conductivity up to 1.49 mS·cm−1 and high transference number of 0.84 without employing any solvent, which to the best of our knowledge is one of the highest COF-based electrolytes so far. Moreover, the fabricated all-solid-state lithium metal batteries demonstrate highly attractive properties with quite stable cycling performance over 100 cycles with 82% capacity reservation at 0.5 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duffner, F.; Kronemeyer, N.; Tübke, J.; Leker, J.; Winter, M.; Schmuch, R. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 2021, 6, 123–134.

    Article  CAS  Google Scholar 

  2. Yang, Y. N.; Jiang, F. L.; Li, Y. Q.; Wang, Z. X.; Zhang, T. A surface coordination interphase stabilizes a solid-state battery. Angew. Chem., Int. Ed. 2021, 60, 24162–24170.

    Article  CAS  Google Scholar 

  3. Pan, K. C.; Zhang, L.; Qian, W. W.; Wu, X. K.; Dong, K.; Zhang, H. T.; Zhang, S. J. A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries. Adv. Mater. 2020, 32, e2000399.

    Article  Google Scholar 

  4. Ji, X.; Hou, S.; Wang, P. F.; He, X. Z.; Piao, N.; Chen, J.; Fan, X. L.; Wang, C. S. Solid-state electrolyte design for lithium dendrite suppression. Adv. Mater. 2020, 32, e2002741.

    Article  Google Scholar 

  5. Shi, K.; Wan, Z. P.; Yang, L.; Zhang, Y. W.; Huang, Y. F.; Su, S. M.; **a, H. Y.; Jiang, K. L.; Shen, L.; Hu, Y. et al. In situ construction of an ultra-stable conductive composite interface for high-voltage all-solid-state lithium metal batteries. Angew. Chem. Int. Ed. 2020, 59, 11784–11788.

    Article  CAS  Google Scholar 

  6. Niu, C. Q.; Luo, W. J.; Dai, C. M.; Yu, C. B.; Xu, Y. X. High-voltage-tolerant covalent organic framework electrolyte with holistically oriented channels for solid-state lithium metal batteries with nickel-rich cathodes. Angew. Chem., Int. Ed. 2021, 60, 24915–24923.

    Article  CAS  Google Scholar 

  7. Vazquez-Molina, D. A.; Mohammad-Pour, G. S.; Lee, C.; Logan, M. W.; Duan, X. F.; Harper, J. K.; Uribe-Romo, F. J. Mechanically shaped two-dimensional covalent organic frameworks reveal crystallographic alignment and fast Li-ion conductivity. J. Am. Chem. Soc. 2016, 138, 9767–9770.

    Article  CAS  Google Scholar 

  8. Chen, Z.; Zhang, H. R.; Dong, T. T.; Mu, P. Z.; Rong, X. C.; Li, Z. T. Uncovering the chemistry of cross-linked polymer binders via chemical bonds for silicon-based electrodes. ACS Appl. Mater. Interfaces 2020, 12, 47164–47180.

    Article  CAS  Google Scholar 

  9. Du, Y.; Yang, H. S.; Whiteley, J. M.; Wan, S.; **, Y. H.; Lee, S. H.; Zhang, W. Ionic covalent organic frameworks with spiroborate linkage. Angew. Chem., Int. Ed. 2016, 55, 1737–1741.

    Article  CAS  Google Scholar 

  10. Hu, Y. M.; Dunlap, N.; Wan, S.; Lu, S. L.; Huang, S. F.; Sellinger, I.; Ortiz, M.; **, Y. H.; Lee, S. H.; Zhang, W. Crystalline lithium imidazolate covalent organic frameworks with high Li-ion conductivity. J. Am. Chem. Soc. 2019, 141, 7518–7525.

    Article  CAS  Google Scholar 

  11. Jeong, K.; Park, S.; Jung, G. Y.; Kim, S. H.; Lee, Y. H.; Kwak, S. K.; Lee, S. Y. Solvent-free, single lithium-ion conducting covalent organic frameworks. J. Am. Chem. Soc. 2019, 141, 5880–5885.

    Article  CAS  Google Scholar 

  12. Li, X.; Hou, Q.; Huang, W.; Xu, H. S.; Wang, X. W.; Yu, W.; Li, R. L.; Zhang, K.; Wang, L.; Chen, Z. X. et al. Solution-processable covalent organic framework electrolytes for all-solid-state Li-organic batteries. ACS Energy Lett. 2020, 5, 3498–3506.

    Article  CAS  Google Scholar 

  13. He, X. F.; Zhu, Y. Z.; Mo, Y. F. Origin of fast ion diffusion in superionic conductors. Nat. Commun. 2017, 8, 15893.

    Article  CAS  Google Scholar 

  14. Cheng, Z. Y.; **e, M. L.; Mao, Y. Y.; Ou, J. X.; Zhang, S. J.; Zhao, Z.; Li, J. L.; Fu, F.; Wu, J. H.; Shen, Y. B. et al. Building lithiophilic ion-conduction highways on garnet-type solid-state Li+ conductors. Adv. Energy Mater. 2020, 10, 1904230.

    Article  CAS  Google Scholar 

  15. Liang, J. Y.; Zeng, X. X.; Zhang, X. D.; Zuo, T. T.; Yan, M.; Yin, Y. X.; Shi, J. L.; Wu, X. W.; Guo, Y. G.; Wan, L. J. Engineering Janus interfaces of ceramic electrolyte via distinct functional polymers for stable high-voltage Li-metal batteries. J. Am. Chem. Soc. 2019, 141, 9165–9169.

    Article  Google Scholar 

  16. Kasemchainan, J.; Zekoll, S.; Spencer Jolly, D.; Ning, Z. Y.; Hartley, G. O.; Marrow, J.; Bruce, P. G. Critical strip** current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater. 2019, 18, 1105–1111.

    Article  CAS  Google Scholar 

  17. Xu, S. J.; Sun, Z. H.; Sun, C. G.; Li, F.; Chen, K.; Zhang, Z. H.; Hou, G. J.; Cheng, H. M.; Li, F. Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature. Adv. Funct. Mater. 2020, 30, 2007172.

    Article  CAS  Google Scholar 

  18. Zhao, Q.; Liu, X. T.; Stalin, S.; Khan, K.; Archer, L. A. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 2019, 4, 365–373.

    Article  CAS  Google Scholar 

  19. Zhang, H.; Li, C. M.; Piszcz, M.; Coya, E.; Rojo, T.; Rodriguez-Martinez, L. M.; Armand, M.; Zhou, Z. B. Single lithium-ion conducting solid polymer electrolytes: Advances and perspectives. Chem. Soc. Rev. 2017, 46, 797–815.

    Article  CAS  Google Scholar 

  20. Ashraf, S.; Zuo, Y. M.; Li, S.; Liu, C. X.; Wang, H.; Feng, X.; Li, P. F.; Wang, B. Crystalline anionic germanate covalent organic framework for high CO2 selectivity and fast Li ion conduction. Chem. -Eur. J. 2019, 25, 13479–13483.

    Article  CAS  Google Scholar 

  21. Li, Z.; Liu, Z. W.; Li, Z. Y.; Wang, T. X.; Zhao, F. L.; Ding, X. S.; Feng, W.; Han, B. H. Defective 2D covalent organic frameworks for postfunctionalization. Adv. Funct. Mater. 2020, 30, 1909267.

    Article  CAS  Google Scholar 

  22. Xu, Q.; Tao, S. S.; Jiang, Q. H.; Jiang, D. L. Ion conduction in polyelectrolyte covalent organic frameworks. J. Am. Chem. Soc. 2018, 140, 7429–7432.

    Article  CAS  Google Scholar 

  23. Zhang, Y. Y.; Duan, J. Y.; Ma, D.; Li, P. F.; Li, S. W.; Li, H. W.; Zhou, J. W.; Ma, X. J.; Feng, X.; Wang, B. Three-dimensional anionic cyclodextrin-based covalent organic frameworks. Angew. Chem., Int. Ed. 2017, 56, 16313–16317.

    Article  CAS  Google Scholar 

  24. Li, X. R.; Tian, Y.; Shen, L.; Qu, Z. B.; Ma, T. Q.; Sun, F.; Liu, X. Y.; Zhang, C.; Shen, J. Q.; Li, X. Y. et al. Electrolyte interphase built from anionic covalent organic frameworks for lithium dendrite suppression. Adv. Funct. Mater. 2021, 31, 2009718.

    Article  CAS  Google Scholar 

  25. Chen, H. W.; Tu, H. Y.; Hu, C. J.; Liu, Y.; Dong, D. R.; Sun, Y. F.; Dai, Y. F.; Wang, S. L.; Qian, H.; Lin, Z. Y. et al. Cationic covalent organic framework nanosheets for fast Li-ion conduction. J. Am. Chem. Soc. 2018, 140, 896–899.

    Article  CAS  Google Scholar 

  26. Schmidtchen, F. P.; Berger, M. Artificial organic host molecules for anions. Chem. Rev. 1997, 97, 1609–1646.

    Article  CAS  Google Scholar 

  27. Wiers, B. M.; Foo, M. L.; Balsara, N. P.; Long, J. R. A solid lithium electrolyte via addition of lithium isopropoxide to a metal-organic framework with open metal sites. J. Am. Chem. Soc. 2011, 133, 14522–14525.

    Article  CAS  Google Scholar 

  28. Fujie, K.; Otsubo, K.; Ikeda, R.; Yamada, T.; Kitagawa, H. Low temperature ionic conductor: Ionic liquid incorporated within a metal-organic framework. Chem. Sci. 2015, 6, 4306–4310.

    Article  CAS  Google Scholar 

  29. Guo, Z. B.; Zhang, Y. Y.; Dong, Y.; Li, J.; Li, S. W.; Shao, P. P.; Feng, X.; Wang, B. Fast ion transport pathway provided by polyethylene glycol confined in covalent organic frameworks. J. Am. Chem. Soc. 2019, 141, 1923–1927.

    Article  CAS  Google Scholar 

  30. Zhang, G.; Hong, Y. L.; Nishiyama, Y.; Bai, S. Y.; Kitagawa, S.; Horike, S. Accumulation of glassy poly(ethylene oxide) anchored in a covalent organic framework as a solid-state Li+ electrolyte. J. Am. Chem. Soc. 2019, 141, 1227–1234.

    Article  CAS  Google Scholar 

  31. Zhao, Z. D.; Chen, W. J.; Impeng, S.; Li, M. X.; Wang, R.; Liu, Y. C.; Zhang, L.; Dong, L.; Unruangsri, J.; Peng, C. X. et al. Covalent organic framework-based ultrathin crystalline porous film: Manipulating uniformity of fluoride distribution for stabilizing lithium metal anode. J. Mater. Chem. A 2020, 8, 3459–3467.

    Article  CAS  Google Scholar 

  32. Feng, X.; Ding, X. S.; Jiang, D. L. Covalent organic frameworks. Chem. Soc. Rev. 2012, 41, 6010–6022.

    Article  CAS  Google Scholar 

  33. Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine, T.; Banerjee, R. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 2012, 134, 19524–19527.

    Article  CAS  Google Scholar 

  34. Nagai, A.; Guo, Z. Q.; Feng, X.; **, S. B.; Chen, X.; Ding, X. S.; Jiang, D. L. Pore surface engineering in covalent organic frameworks. Nat. Commun. 2011, 2, 536.

    Article  Google Scholar 

  35. Skorjanc, T.; Shetty, D.; Olson, M. A.; Trabolsi, A. Design strategies and redox-dependent applications of insoluble viologen-based covalent organic polymers. ACS Appl. Mater. Interfaces 2019, 11, 6705–6716.

    Article  CAS  Google Scholar 

  36. Yan, Y. C.; Chen, Z.; Yang, J.; Guan, L.; Hu, H.; Zhao, Q. S.; Ren, H.; Lin, Y.; Li, Z. T.; Wu, M. B. Controllable substitution of S radicals on triazine covalent framework to expedite degradation of polysulfides. Small 2020, 16, e2004631.

    Article  Google Scholar 

  37. Zhao, H. Y.; **, Z.; Su, H. M.; **g, X. F.; Sun, F. X.; Zhu, G. S. Targeted synthesis of a 2D ordered porous organic framework for drug release. Chem. Commun. (Camb.) 2011, 47, 6389–6391.

    Article  CAS  Google Scholar 

  38. Cinar, H.; Kretschmann, O.; Ritter, H. Synthesis of novel fluorinated polymers via cyclodextrin complexes in aqueous solution. Macromolecules 2005, 38, 5078–5082.

    Article  CAS  Google Scholar 

  39. Fang, R. Y.; Xu, B. Y.; Grundish, N. S.; **a, Y.; Li, Y. T.; Lu, C. W.; Liu, Y. J.; Wu, N.; Goodenough, J. B. Li2S6-integrated PEO-based polymer electrolytes for all-solid-state lithium-metal batteries. Angew. Chem., Int. Ed. 2021, 60, 17701–17706.

    Article  CAS  Google Scholar 

  40. Wu, N.; Chien, P. H.; Li, Y. T.; Dolocan, A.; Xu, H. H.; Xu, B. Y.; Grundish, N. S.; **, H. B.; Hu, Y. Y.; Goodenough, J. B. Fast Li+ conduction mechanism and interfacial chemistry of a NASICON/polymer composite electrolyte. J. Am. Chem. Soc. 2020, 142, 2497–2505.

    Article  CAS  Google Scholar 

  41. Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the dam** function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the financial support from the Natural Science Foundation of Shandong (Nos. ZR2020JQ21 and ZR2021ZD24), National Natural Science Foundation of China (Nos. 51873231 and 22138013), Taishan Scholar Project (No. tsqn201909062), and the Technology Foundation of Shandong Energy Group Co., LTD. (YKZB2020-176, YKKJ2019AJ08JG-R63). This work was partially carried out at the City University of Hong Kong for MD simulations. We greatly thank Pro. Jian LU give us assistance on NMR data unscrambling and analyzing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongtao Li or Linjie Zhi.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Z., Lu, L., Zhang, S. et al. Amphoteric covalent organic framework as single Li+ superionic conductor in all-solid-state. Nano Res. 16, 528–535 (2023). https://doi.org/10.1007/s12274-022-4783-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4783-7

Keywords

Navigation