Log in

Ultra-stable and color-tunable manganese ions doped lead-free cesium zinc halides nanocrystals in glasses for light-emitting applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

All inorganic CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals have made unprecedented radical progresses for opto-electronic applications, but their instability and toxicity of lead impede their wide applications. Herein, we report the first precipitation of lead-free Mn:Cs2ZnX4 nanocrystals in glasses. Efficient green and red photoluminescence are realized from these Mn:Cs2ZnX4 nanocrystals in glasses. By adjusting the size and halide component in these nanocrystals, coordination environment of Mn2+ ions can be tuned, leading to tunable photoluminescence with improved quantum efficiency. It is illustrated that in-situ precipitation of these Mn:Cs2ZnX4 nanocrystals in glasses significantly improves their thermal-, chemical-, and photo-stabilities, making them promising for light-emitting diodes with stable chromaticity coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yin, W. J.; Shi, T. T.; Yan, Y. F. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 2014, 26, 4653–4658.

    Article  CAS  Google Scholar 

  2. Green, M. A.; Ho-Baillie, A.; Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514.

    Article  CAS  Google Scholar 

  3. Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M. J.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522.

    Article  CAS  Google Scholar 

  4. Fan, Q. Q.; Biesold-McGee, G. V.; Ma, J. Z.; Xu, Q. N.; Pan, S.; Peng, J.; Lin, Z. Q. Lead-free halide perovskite nanocrystals: Crystal structures, synthesis, stabilities, and optical properties. Angew. Chem., Int. Ed. 2020, 59, 1030–1046.

    Article  CAS  Google Scholar 

  5. Sun, S. Q.; Lu, M.; Gao, X. P.; Shi, Z. F.; Bai, X.; Yu, W. W.; Zhang, Y. 0D perovskites: Unique properties, synthesis, and their applications. Adv. Sci. (Weinh.) 2021, 8, 2102689.

    Google Scholar 

  6. Li, H. M.; Lin, H.; Ouyang, D.; Yao, C. L.; Li, C.; Sun, J. Y.; Song, Y. L.; Wang, Y. F.; Yan, Y. F.; Wang, Y. et al. Efficient and stable red perovskite light-emitting diodes with operational stability > 300 h. Adv. Mater. 2021, 33, 2008820.

    Article  CAS  Google Scholar 

  7. Liu, Z.; Qiu, W. D.; Peng, X. M.; Sun, G. W.; Liu, X. Y.; Liu, D. H.; Li, Z. C.; He, F. R.; Shen, C. Y.; Gu, Q. et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dualadditive strategy for defect passivation and nanostructure regulation. Adv. Mater. 2021, 33, 2103268.

    Article  CAS  Google Scholar 

  8. Shen, Y.; Wu, H. Y.; Li, Y. Q.; Shen, K. C.; Gao, X. Y.; Song, F.; Tang, J. X. Interfacial nucleation seeding for electroluminescent manipulation in blue perovskite light-emitting diodes. Adv. Funct. Mater. 2021, 31, 2170331.

    Article  CAS  Google Scholar 

  9. Lou, S. Q.; Xuan, T. T.; Wang, J. (INVITED) stability:A desiderated problem for the lead halide perovskites. Opt. Mater. X 2019, 1, 100023.

    CAS  Google Scholar 

  10. Luo, B. B.; Li, F.; Xu, K.; Guo, Y.; Liu, Y.; **a, Z. G.; Zhang, J. Z. B-site doped lead halide perovskites:Synthesis, band engineering, photophysics, and light emission applications. J. Mater. Chem. C 2019, 7, 2781–2808.

    Article  CAS  Google Scholar 

  11. Wang, Z.; Zhang, Y. Q.; Liu, X. D.; Yu, Y. X.; Xu, F. C.; Ding, J.; Liang, X. J.; Yang, K. Q.; **ang, W. D. High stability and strong luminescence CsPbBr3/Cs4PbBr6 perovskite nanocomposite: Large-scale synthesis, reversible luminescence, and anti-counterfeiting application. Adv. Mater. Technol. 2021, 6, 2100654.

    Article  CAS  Google Scholar 

  12. Akkerman, Q. A.; Rainò, G.; Kovalenko, M. V.; Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 2018, 17, 394–405.

    Article  CAS  Google Scholar 

  13. Chen, W. W.; Hao, J. Y.; Hu, W.; Zang, Z. G.; Tang, X. S.; Fang, L.; Niu, T. C.; Zhou, M. Enhanced stability and tunable photoluminescence in perovskite CsPbX3/ZnS quantum dot heterostructure. Small 2017, 13, 1604085.

    Article  Google Scholar 

  14. Shao, G. Z.; Zhao, Y.; Yu, Y. X.; Yang, H. S.; Liu, X. D.; Zhang, Y. J.; **ang, W. D.; Liang, X. J. Bright emission and high photoluminescence CsPb2Br5 NCs encapsulated in mesoporous silica with ultrahigh stability and excellent optical properties for white light-emitting diodes. J. Mater. Chem. C 2019, 7, 13585–13593.

    Article  CAS  Google Scholar 

  15. Ercan, E.; Tsai, P. C.; Chen, J. Y.; Lam, J. Y.; Hsu, L. C.; Chueh, C. C.; Chen, W. C. Stretchable and ambient stable perovskite/polymer luminous hybrid nanofibers of multicolor fiber mats and their white LED applications. ACS Appl. Mater. Interfaces 2019, 11, 23605–23615.

    Article  CAS  Google Scholar 

  16. Chen, Z.; Gu, Z. G.; Fu, W. Q.; Wang, F.; Zhang, J. A confined fabrication of perovskite quantum dots in oriented MOF thin film. ACS Appl. Mater. Interfaces 2016, 8, 28737–28742.

    Article  CAS  Google Scholar 

  17. Huang, S. Q.; Li, Z. C.; Kong, L.; Zhu, N. W.; Shan, A. D.; Li, L. Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in “Waterless” toluene. J. Am. Chem. Soc. 2016, 138, 5749–5752.

    Article  CAS  Google Scholar 

  18. Ai, B.; Liu, C.; Wang, J.; **e, J.; Han, J. J.; Zhao, X. J. Precipitation and optical properties of CsPbBr3 quantum dots in phosphate glasses. J. Am. Ceram. Soc. 2016, 99, 2875–2877.

    Article  CAS  Google Scholar 

  19. Ye, Y.; Zhang, W. C.; Zhao, Z. Y.; Wang, J.; Liu, C.; Deng, Z.; Zhao, X. J.; Han, J. J. Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications. Adv. Opt. Mater. 2019, 7, 1801663.

    Article  Google Scholar 

  20. Zhang, B. W.; Zhang, K.; Li, L. F.; Xu, C. C.; Wang, R. F.; Wang, C.; Yang, J.; Yang, Y.; Wang, J.; Qiu, F. et al. Enhancing stability and luminescence quantum yield of CsPbBr3 quantum dots by embedded in borosilicate glass. J. Alloys Compd. 2021, 874, 159962.

    Article  CAS  Google Scholar 

  21. Kong, Q. K.; Yang, B.; Chen, J. S.; Zhang, R. L.; Liu, S. P.; Zheng, D. Y.; Zhang, H. L.; Liu, Q. T.; Wang, Y. Y.; Han, K. L. Phase engineering of cesium manganese bromides nanocrystals with color-tunable emission. Angew. Chem., Int. Ed. 2021, 60, 19653–19659.

    Article  CAS  Google Scholar 

  22. Shankar, H.; Ghosh, S.; Kar, P. Highly stable blue fluorescent lead free all-inorganic Cs2ZnX4 2D perovskite nanocrystals. J. Alloys Compd. 2020, 844, 156148.

    Article  CAS  Google Scholar 

  23. Zhang, Z. X.; Zhao, R. T.; Teng, S. Y.; Huang, K. K.; Zhang, L. J.; Wang, D. Y.; Yang, W. S.; **e, R. G.; Pradhan, N. Color tunable self-trapped emissions from lead-free all inorganic IA-IB bimetallic halides Cs-Ag-X (X = Cl, Br, I). Small 2020, 16, 2004272.

    Article  CAS  Google Scholar 

  24. Zhao, X. H.; Wu, M.; Liu, H.; Wang, Y. X.; Wang, K.; Yang, X. Y.; Zou, B. Pressure-treated engineering to harvest enhanced green emission in Mn-based organic-inorganic metal halides at ambient conditions. Adv. Funct. Mater. 2021, 32, 2109277.

    Article  Google Scholar 

  25. Jellicoe, T. C.; Richter, J. M.; Glass, H. F. J.; Tabachnyk, M.; Brady, R.; Dutton, S. E.; Rao, A.; Friend, R. H.; Credgington, D.; Greenham, N. C. et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J. Am. Chem. Soc. 2016, 138, 2941–2944.

    Article  CAS  Google Scholar 

  26. Fu, P. F.; Huang, M. L.; Shang, Y. Q.; Yu, N.; Zhou, H. L.; Zhang, Y. B.; Chen, S. Y.; Gong, J. K.; Ning, Z. J. Organic-inorganic layered and hollow tin bromide perovskite with tunable broadband emission. ACS Appl. Mater. Interfaces 2018, 10, 34363–34369.

    Article  CAS  Google Scholar 

  27. Roccanova, R.; Yangui, A.; Nhalil, H.; Shi, H. L.; Du, M. H.; Saparov, B. Near-unity photoluminescence quantum yield in blue-emitting Cs3Cu2Br5−xIx (0 ≤ x ≤ 5). ACS Appl. Electron. Mater. 2019, 1, 269–274.

    Article  CAS  Google Scholar 

  28. Cheng, P. F.; Feng, L.; Liu, Y. F.; Zheng, D. Y.; Sang, Y. B.; Zhao, W. Y.; Yang, Y.; Yang, S. Q.; Wei, D. H.; Wang, G. X. et al. Doped zero-dimensional cesium zinc halides for high-efficiency blue light emission. Angew. Chem., Int. Ed. 2020, 59, 21414–21418.

    Article  CAS  Google Scholar 

  29. Xu, K. M.; Wei, Q.; Wang, H.; Yao, B.; Zhou, W. J.; Gao, R.; Chen, H.; Li, H. S.; Wang, J. T.; Ning, Z. J. The 3D-structure-mediated growth of zero-dimensional Cs4SnX6 nanocrystals. Nanoscale 2022, 14, 2248–2255.

    Article  CAS  Google Scholar 

  30. Su, B. B.; Li, M. Z.; Song, E. H.; ** in cesium zinc halides single crystals enabling high-efficiency near-infrared emission. Adv. Funct. Mater. 2021, 31, 2105316.

    Article  CAS  Google Scholar 

  31. Morad, V.; Cherniukh, I.; Pöttschacher, L.; Shynkarenko, Y.; Yakunin, S.; Kovalenko, M. V. Manganese(II) in tetrahedral halide environment: Factors governing bright green luminescence. Chem. Mater. 2019, 31, 10161–10169.

    Article  CAS  Google Scholar 

  32. Li, S. R.; Luo, J. J.; Liu, J.; Tang, J. Self-trapped excitons in all-inorganic halide perovskites: Fundamentals, status, and potential applications. J. Phys. Chem. Lett. 2019, 10, 1999–2007.

    Article  CAS  Google Scholar 

  33. Williams, R. T.; Song, K. S.; Faust, W. L.; Leung, C. H. Off-center self-trapped excitons and creation of lattice defects in alkali halide crystals. Phys. Rev. B 1986, 33, 7232–7240.

    Article  CAS  Google Scholar 

  34. Fowler, W. B.; Marrone, M. J.; Kabler, M. N. Theory of self-trapped exciton luminescence in halide crystals. Phys. Rev. B 1973, 8, 5909–5919.

    Article  Google Scholar 

  35. Zhu, D. X.; Zaffalon, M. L.; Pinchetti, V.; Brescia, R.; Moro, F.; Fasoli, M.; Fanciulli, M.; Tang, A. W.; Infante, I.; De Trizio, L. et al. Bright blue emitting Cu-doped Cs2ZnCl4 colloidal nanocrystals. Chem. Mater. 2020, 32, 5897–5903.

    Article  CAS  Google Scholar 

  36. Su, B. B.; Zhou, G. J.; Huang, J. L.; Song, E. H.; Nag, A.; **a, Z. G. Mn2+-doped metal halide perovskites: Structure, photoluminescence, and application. Laser Photonics Rev. 2021, 15, 2000334.

    Article  CAS  Google Scholar 

  37. Zhou, Q.; Dolgov, L.; Srivastava, A. M.; Zhou, L.; Wang, Z. L.; Shi, J. X.; Dramicanin, M. D.; Brik, M. G.; Wu, M. M. Mn2+ and Mn4+ red phosphors: Synthesis, luminescence and applications in WLEDs. A review. J. Mater. Chem. C 2018, 6, 2652–2671.

    Article  CAS  Google Scholar 

  38. Lin, S. S.; Lin, H.; Ma, C. G.; Cheng, Y.; Ye, S. Z.; Lin, F. L.; Li, R. F.; Xu, J.; Wang, Y. S. High-security-level multi-dimensional optical storage medium: Nanostructured glass embedded with LiGa5O8: Mn2+ with photostimulated luminescence. Light Sci. Appl. 2020, 9, 22.

    Article  CAS  Google Scholar 

  39. Su, B. B.; Molokeev, M. S.; **a, Z. G. Mn2+-based narrow-band green-emitting Cs3MnBr5 phosphor and the performance optimization by Zn2+ alloying. J. Mater. Chem. C 2019, 7, 11220–11226.

    Article  CAS  Google Scholar 

  40. Rao, J. L.; Purandar, K. Electronic absorption spectrum of Mn2+ ions doped in diglycine barium chloride monohydrate. Solid State Commun. 1981, 37, 983–986.

    Article  CAS  Google Scholar 

  41. Peng, H.; Huang, T.; Zou, B. S.; Tian, Y.; Wang, X. X.; Guo, Y. C.; Dong, T. T.; Yu, Z. M.; Ding, C. J.; Yang, F. et al. Organic-inorganic hybrid manganese bromine single crystal with dual-band photoluminescence from polaronic and bipolaronic excitons. Nano Energy 2021, 87, 106166.

    Article  CAS  Google Scholar 

  42. Yan, S. Y.; Tian, W. L.; Chen, H.; Tang, K. X.; Lin, T. T.; Zhong, G. Y.; Qiu, L. Z.; Pan, X. Y.; Wang, W. Z. Synthesis of 0D manganese-based organic-inorganic hybrid perovskite and its application in lead-free red light-emitting diode. Adv. Funct. Mater. 2021, 31, 2100855.

    Article  CAS  Google Scholar 

  43. Almutlaq, J.; Mir, W. J.; Gutiérrez-Arzaluz, L.; Yin, J.; Vasylevskyi, S.; Maity, P.; Liu, J. K.; Naphade, R.; Mohammed, O. F.; Bakr, O. M. CsMnBr3: Lead-free nanocrystals with high photoluminescence quantum yield and picosecond radiative lifetime. ACS Mater. Lett. 2021, 3, 290–297.

    Article  CAS  Google Scholar 

  44. Ma, Y. Y.; Song, Y. R.; Xu, W. J.; Zhong, Q. Q.; Fu, H. Q.; Liu, X. L.; Yue, C. Y.; Lei, X. W. Solvent-free mechanochemical syntheses of microscale lead-free hybrid manganese halides as efficient green light phosphors. J. Mater. Chem. C 2021, 9, 9952–9961.

    Article  CAS  Google Scholar 

  45. **ao, H.; Dang, P. P.; Yun, X. H.; Li, G. G.; Wei, Y.; Wei, Y.; **ao, X.; Zhao, Y. J.; Molokeev, M. S.; Cheng, Z. Y. et al. Solvatochromic photoluminescent effects in all-inorganic manganese(II)-based perovskites by highly selective solvent-induced crystal-to-crystal phase transformations. Angew. Chem., Int. Ed. 2021, 60, 3699–3707.

    Article  CAS  Google Scholar 

  46. Yan, S. Y.; Tang, K. X.; Lin, Y. J.; Ren, Y. H.; Tian, W. L.; Chen, H.; Lin, T. T.; Qiu, L. Z.; Pan, X. Y.; Wang, W. Z. Light-emitting diodes with manganese halide tetrahedron embedded in anti-perovskites. ACS Energy Lett. 2021, 6, 1901–1911.

    Article  CAS  Google Scholar 

  47. Li, C. Y.; Bai, X. W.; Guo, Y. C.; Zou, B. S. Tunable emission properties of manganese chloride small single crystals by pyridine incorporation. ACS Omega 2019, 4, 8039–8045.

    Article  CAS  Google Scholar 

  48. Bai, X. W.; Zhong, H. Z.; Chen, B. K.; Chen, C.; Han, J. B.; Zeng, R. S.; Zou, B. S. Pyridine-modulated Mn ion emission properties of C10H12N2MnBr4 and C5H6NMnBr3 single crystals. J. Phys. Chem. C. 2018, 122, 3130–3137.

    Article  CAS  Google Scholar 

  49. Peng, H.; Zou, B. S.; Guo, Y. C.; **ao, Y. H.; Zhi, R. N.; Fan, X. Y.; Zou, M.; Wang, J. P. Evolution of the structure and properties of mechanochemically synthesized pyrrolidine incorporated manganese bromide powders. J. Mater. Chem. C 2020, 8, 6488–6495.

    Article  CAS  Google Scholar 

  50. Wei, J. H.; Liao, J. F.; Wang, X. D.; Zhou, L.; Jiang, Y.; Kuang, D. B. All-inorganic lead-free heterometallic Cs4MnBi2Cl12 perovskite single crystal with highly efficient orange emission. Matter 2020, 3, 892–903.

    Article  Google Scholar 

  51. Dang, Z. Y.; Shamsi, J.; Palazon, F.; Imran, M.; Akkerman, Q. A.; Park, S.; Bertoni, G.; Prato, M.; Brescia, R.; Manna, L. In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals. ACS Nano 2017, 11, 2124–2132.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Key Research and Development Program of Hubei Province, China (No. 2021BAA206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Liu.

Electronic Supplementary Material

12274_2022_4607_MOESM1_ESM.pdf

Ultra-stable and color-tunable manganese ions doped lead-free cesium zinc halides nanocrystals in glasses for light-emitting applications

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Ye, Y., Zhang, W. et al. Ultra-stable and color-tunable manganese ions doped lead-free cesium zinc halides nanocrystals in glasses for light-emitting applications. Nano Res. 15, 9368–9376 (2022). https://doi.org/10.1007/s12274-022-4607-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4607-9

Keywords

Navigation