Log in

Upconversion nanorods anchored metal-organic frameworks via hierarchical and dynamic assembly for synergistic therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Heterogeneous materials made of metal-organic frameworks (MOFs) and optically active nanomaterials have attracted intensive interests in recent years due to their distinct physicochemical properties, but controllable fabrication of these materials remains challenging yet. In this work, we report a new strategy to in situ fabricate heterogeneous nanomaterials based on UiO-66-NH2 and upconversion nanorods (UCNRs) via a hierarchical and dynamic assembly process. Core-satellite structured UiO-66-NH2@UCNRs have been successfully fabricated, and the formation mechanism was thoroughly investigated by the combined use of scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. Our results revealed the involvement of three main stages: supramolecular assembly of UiO-66-NH2 precursors with UCNRs, nucleation and growth of UiO-66-NH2 crystal, and dynamic assembly with UCNRs accompanied by Ostwald ripening. Furthermore, based on the hereditary optical and porous features of the heterogeneous nanomaterials, an enhanced multimodal synergistic anticancer platform has been established by integrating near-infrared (NIR)-triggered photodynamic therapy (PDT) and pH-triggered anticancer drug delivery, as confirmed by cellular experiments. The present study provides a new avenue for develo** advanced functional heterogeneous nanomaterials via the hierarchical and dynamic assembly strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, Y. F.; Di, Z. H.; Gao, J. H.; Cheng, P.; Di, C. Z.; Zhang, G.; Liu, B.; Shi, X. H.; Sun, L. D.; Li, L. L. et al. Heterodimers made of upconversion nanoparticles and metal-organic frameworks. J. Am. Chem. Soc. 2017, 139, 13804–13810.

    Article  CAS  Google Scholar 

  2. Reddy, A. L. M.; Gowda, S. R.; Shaijumon, M. M.; Ajayan, P. M. Hybrid nanostructures for energy storage applications. Adv. Mater. 2012, 24, 5045–5064.

    Article  CAS  Google Scholar 

  3. Zhang, S. D.; Geryak, R.; Geldmeier, J.; Kim, S.; Tsukruk, V. V. Synthesis, assembly, and applications of hybrid nanostructures for biosensing. Chem. Rev. 2017, 117, 12942–13038.

    Article  CAS  Google Scholar 

  4. Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230.

    Article  CAS  Google Scholar 

  5. Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

    CAS  Google Scholar 

  6. Figuerola, A.; Fiore, A.; Di Corato, R.; Falqui, A.; Giannini, C.; Micotti, E.; Lascialfari, A.; Corti, M.; Cingolani, R.; Pellegrino, T. et al. One-pot synthesis and characterization of size-controlled bimagnetic FePt-iron oxide heterodimer nanocrystals. J. Am. Chem. Soc. 2008, 130, 1477–1487.

    Article  CAS  Google Scholar 

  7. Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

    Article  CAS  Google Scholar 

  8. Yuan, Z.; Zhang, L.; Li, S. Z.; Zhang, W. N.; Lu, M.; Pan, Y.; **e, X. J.; Huang, L.; Huang, W. Paving metal-organic frameworks with upconversion nanoparticles via self-assembly. J. Am. Chem. Soc. 2018, 140, 15507–15515.

    Article  CAS  Google Scholar 

  9. Wang, S.; Lin, J.; Wang, Z. T.; Zhou, Z. J.; Bai, R. L.; Lu, N.; Liu, Y. J.; Fu, X.; Jacobson, O.; Fan, W. P. et al. Core-satellite polydopamine-gadolinium-metallofullerene nanotheranostics for multimodal imaging guided combination cancer therapy. Adv. Mater. 2017, 29, 1701013.

    Article  Google Scholar 

  10. Tan, L. L.; Wei, M. Y.; Shang, L.; Yang, Y. W. Cucurbiturils-mediated noble metal nanoparticles for applications in sensing, SERS, theranostics, and catalysis. Adv. Funct. Mater. 2021, 31, 2007277.

    Article  CAS  Google Scholar 

  11. Wang, X. Y.; He, Y.; Han, X. P.; Zhao, J.; Li, L. L.; Zhang, J. F.; Zhong, C.; Deng, Y. D.; Hu, W. B. Engineering cobalt sulfide/oxide heterostructure with atomically mixed interfaces for synergistic electrocatalytic water splitting. Nano Res. 2022, 15, 1246–1253.

    Article  CAS  Google Scholar 

  12. Zhao, X. T.; Li, Y. B.; Du, L. M.; Deng, Z. M.; Jiang, M. Y.; Zeng, S. J. Soft X-ray stimulated lanthanide@MOF nanoprobe for amplifying deep tissue synergistic photodynamic and antitumor immunotherapy. Adv. Healthc. Mater. 2021, 10, 2101174.

    Article  CAS  Google Scholar 

  13. Ghasempour, H.; Wang, K. Y.; Powell, J. A.; ZareKarizi, F.; Lv, X. L.; Morsali, A.; Zhou, H. C. Metal-organic frameworks based on multicarboxylate linkers. Coord. Chem. Rev. 2021, 426, 213542.

    Article  CAS  Google Scholar 

  14. Wang, L.; Han, Y. Z.; Feng, X.; Zhou, J. W.; Qi, P. F.; Wang, B. Metal-organic frameworks for energy storage: Batteries and supercapacitors. Coord. Chem. Rev. 2016, 307, 361–381.

    Article  CAS  Google Scholar 

  15. Wu, J.; Chen, J. H.; Wang, C.; Zhou, Y.; Ba, K.; Xu, H.; Bao, W. Z.; Xu, X. H.; Carlsson, A.; Lazar, S. et al. Metal-organic framework for transparent electronics. Adv. Sci. 2020, 7, 1903003.

    Article  CAS  Google Scholar 

  16. Kalmutzki, M. J.; Hanikel, N.; Yaghi, O. M. Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Sci. Adv. 2018, 4, eaat9180.

    Article  CAS  Google Scholar 

  17. Li, Y. T.; Tang, J. L.; He, L. C.; Liu, Y.; Liu, Y. L.; Chen, C. Y.; Tang, Z. Y. Core-shell upconversion nanoparticle@metal-organic framework nanoprobes for luminescent/magnetic dual-mode targeted imaging. Adv. Mater. 2015, 27, 4075–4080.

    Article  CAS  Google Scholar 

  18. Shi, X. X.; Xu, H.; Wu, Y. N.; Zhao, Y. M.; Meng, H. M.; Li, Z. H.; Qu, L. B. Two-dimension (2D) Cu-MOFs/aptamer nanoprobe for in situ ATP imaging in living cells. J. Anal. Test. 2021, 5, 165–173.

    Article  Google Scholar 

  19. Liu, Q.; Wu, B.; Li, M. Y.; Huang, Y. Y.; Li, L. L. Heterostructures made of upconversion nanoparticles and metal-organic frameworks for biomedical applications. Adv. Sci. 2022, 9, 2103911.

    Article  CAS  Google Scholar 

  20. Wang, Z.; Liu, B.; Sun, Q. Q.; Feng, L. L.; He, F.; Yang, P. P.; Gai, S. L.; Quan, Z. W.; Lin, J. Upconverted metal-organic framework janus architecture for near-infrared and ultrasound co-enhanced high performance tumor therapy. ACS Nano 2021, 15, 12342–12357.

    Article  CAS  Google Scholar 

  21. Li, Z. K.; Qiao, X.; He, G. H.; Sun, X.; Feng, D. H.; Hu, L. F.; Xu, H.; Xu, H. B.; Ma, S. Q.; Tian, J. Core-satellite metal-organic framework@upconversion nanoparticle superstructures via electrostatic self-assembly for efficient photodynamic theranostics. Nano Res. 2020, 13, 3377–3386.

    Article  CAS  Google Scholar 

  22. Hao, C. H.; Wu, X. L.; Sun, M. Z.; Zhang, H. Y.; Yuan, A.; Xu, L. G.; Xu, C. L.; Kuang, H. Chiral core-shell upconversion nanoparticle@MOF nanoassemblies for quantification and bioimaging of reactive oxygen species in vivo. J. Am. Chem. Soc. 2019, 141, 19373–19378.

    Article  CAS  Google Scholar 

  23. Liu, C.; Liu, B.; Zhao, J.; Di, Z. H.; Chen, D. Q.; Gu, Z. J.; Li, L. L.; Zhao, Y. L. Nd3+-sensitized upconversion metal-organic frameworks for mitochondria-targeted amplified photodynamic therapy. Angew. Chem., Int. Ed. 2020, 59, 2634–2638.

    Article  CAS  Google Scholar 

  24. Chen, Y. J.; Wang, P. X.; Hao, H. G.; Hong, J. J.; Li, H. J.; Ji, S. F.; Li, A.; Gao, R.; Dong, J. C.; Han, X. D. et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.

    Article  CAS  Google Scholar 

  25. Zhang, H. Y.; Hao, C. L.; Qu, A. H.; Sun, M. Z.; Xu, L. G.; Xu, C. L.; Kuang, H. Heterostructures of MOFs and nanorods for multimodal imaging. Adv. Funct. Mater. 2018, 28, 1805320.

    Article  Google Scholar 

  26. Zeng, J. Y.; Zhang, M. K.; Peng, M. Y.; Gong, D.; Zhang, X. Z. Porphyrinic metal-organic frameworks coated gold nanorods as a versatile nanoplatform for combined photodynamic/photothermal/chemotherapy of tumor. Adv. Funct. Mater. 2018, 28, 1705451.

    Article  Google Scholar 

  27. Hao, M. J.; Miao, P.; Wang, Y.; Wang, W. S.; Ge, S. G.; Yu, X. Y.; Hu, X. X.; Ding, B. Y.; Zhang, J.; Yan, M. Near-infrared light-initiated photoelectrochemical biosensor based on upconversion nanorods for immobilization-free miRNA detection with double signal amplification. Anal. Chem. 2021, 93, 11251–11258.

    Article  CAS  Google Scholar 

  28. Xue, Z. L.; Yi, Z. G.; Li, X. L.; Li, Y. B.; Jiang, M. Y.; Liu, H. R.; Zeng, S. J. Upconversion optical/magnetic resonance imaging-guided small tumor detection and in vivo tri-modal bioimaging based on high-performance luminescent nanorods. Biomaterials 2017, 115, 90–103.

    Article  CAS  Google Scholar 

  29. Osterrieth, J. W. M.; Wright, D.; Noh, H.; Kung, C. W.; Vulpe, D.; Li, A.; Park, J. E.; Van Duyne, R. P.; Moghadam, P. Z.; Baumberg, J. J. et al. Core-shell gold nanorod@zirconium-based metal-organic framework composites as in situ size-selective Raman probes. J. Am. Chem. Soc. 2019, 141, 3893–3900.

    Article  CAS  Google Scholar 

  30. Zhou, Z. H.; Zhao, J.; Di, Z. H.; Liu, B.; Li, Z. H.; Wu, X. M.; Li, L. L. Core-shell gold nanorod@mesoporous-MOF heterostructures for combinational phototherapy. Nanoscale 2021, 13, 131–137.

    Article  CAS  Google Scholar 

  31. Shao, Y. L.; Liu, B.; Di, Z. H.; Zhang, G.; Sun, L. D.; Li, L. L.; Yan, C. H. Engineering of upconverted metal-organic frameworks for near-infrared light-triggered combinational photodynamic/chemo/immunotherapy against hypoxic tumors. J. Am. Chem. Soc. 2020, 142, 3939–3946.

    Article  CAS  Google Scholar 

  32. Sun, L. N.; Wei, R. Y.; Feng, J.; Zhang, H. J. Tailored lanthanide-doped upconversion nanoparticles and their promising bioapplication prospects. Coord. Chem. Rev. 2018, 364, 10–32.

    Article  CAS  Google Scholar 

  33. Sedlmeier, A.; Gorris, H. H. Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications. Chem. Soc. Rev. 2015, 44, 1526–1560.

    Article  CAS  Google Scholar 

  34. Liu, J. N.; Bu, W. B.; Pan, L. M.; Shi, J. L. NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica. Angew. Chem., Int. Ed. 2013, 52, 4375–4379.

    Article  CAS  Google Scholar 

  35. Luo, D.; Yan, C.; Wang, T. Interparticle forces underlying nanoparticle self-assemblies. Small 2015, 11, 5984–6008.

    Article  CAS  Google Scholar 

  36. Yang, M.; Chan, H.; Zhao, G. P.; Bahng, J. H.; Zhang, P. J.; Král, P.; Kotov, N. A. Self-assembly of nanoparticles into biomimetic capsid-like nanoshells. Nat. Chem. 2017, 9, 287–294.

    Article  Google Scholar 

  37. Jia, S. S.; Xu, W. S.; Chen, Y.; Liu, Y. Pyrrole/macrocycle/MOF supramolecular co-assembly for flexible solid state supercapacitors. Chin. Chem. Lett. 2021, 32, 2773–2776.

    Article  CAS  Google Scholar 

  38. Qin, C. Y.; Li, Y. W.; Li, Q. F.; Yan, C. C.; Cao, L. P. Aggregation-induced emission and self-assembly of functional tetraphenylethene-based tetracationic dicyclophanes for selective detection of ATP in water. Chin. Chem. Lett. 2021, 32, 3531–3534.

    Article  CAS  Google Scholar 

  39. Liu, Y.; Yang, Y.; Sun, Y. J.; Song, J. B.; Rudawski, N. G.; Chen, X. Y.; Tan, W. H. Ostwald ripening-mediated grafting of metal-organic frameworks on a single colloidal nanocrystal to form uniform and controllable MXF. J. Am. Chem. Soc. 2019, 141, 7407–7413.

    Article  CAS  Google Scholar 

  40. Chatterjee, D. K.; Fong, L. S.; Zhang, Y. Nanoparticles in photodynamic therapy: An emerging paradigm. Adv. Drug. Deliv. Rev. 2008, 60, 1627–1637.

    Article  CAS  Google Scholar 

  41. Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387.

    Article  CAS  Google Scholar 

  42. Hang, L. F.; Zhang, T.; Wen, H.; Liang, L. B.; Li, W. M.; Ma, X. F.; Jiang, G. H. Controllable photodynamic performance via an acidic microenvironment based on two-dimensional metal-organic frameworks for photodynamic therapy. Nano Res. 2021, 14, 660–666.

    Article  CAS  Google Scholar 

  43. Kan, J. L.; Jiang, Y.; Xue, A. Q.; Yu, Y. H.; Wang, Q. B.; Zhou, Y.; Dong, Y. B. Surface decorated porphyrinic nanoscale metal-organic framework for photodynamic therapy. Inorg. Chem. 2018, 57, 5420–5428.

    Article  CAS  Google Scholar 

  44. Simon-Yarza, T.; Mielcarek, A.; Couvreur, P.; Serre, C. Nanoparticles of metal-organic frameworks: On the road to in vivo efficacy in biomedicine. Adv. Mater. 2018, 30, 1707365.

    Article  Google Scholar 

  45. Tan, L. L.; Li, H. W.; Zhou, Y.; Zhang, Y.; Feng, X.; Wang, B.; Yang, Y. W. Zn2+-triggered drug release from biocompatible zirconium MOFs equipped with supramolecular gates. Small 2015, 11, 3807–3813.

    Article  CAS  Google Scholar 

  46. He, L. C.; Brasino, M.; Mao, C. C.; Cho, S.; Park, W.; Goodwin, A. P.; Cha, J. N. DNA-assembled core-satellite upconverting-metal-organic framework nanoparticle superstructures for efficient photodynamic therapy. Small 2017, 13, 1700504.

    Article  Google Scholar 

  47. Kan, J. L.; Wang, H. L.; Sun, W.; Cao, W.; Tao, J.; Jiang, J. Z. Sandwich-type mixed tetrapyrrole rare-earth triple-decker compounds. Effect of the coordination geometry on the single-molecule-magnet nature. Inorg. Chem. 2013, 52, 8505–8510.

    Article  CAS  Google Scholar 

  48. Zhou, Y. F.; Fan, S. Y.; Feng, L. L.; Huang, X. L.; Chen, X. Y. Manipulating intratumoral fenton chemistry for enhanced chemodynamic and chemodynamic-synergized multimodal therapy. Adv. Mater. 2021, 33, 2104223.

    Article  CAS  Google Scholar 

  49. Yu, K. X.; Qiao, Z. J.; Song, W. L.; Bi, S. DNA nanotechnology for multimodal synergistic theranostics. J. Anal. Test. 2021, 5, 112–129.

    Article  Google Scholar 

  50. Zheng, Y. D.; Zhang, X. Y.; Su, Z. Q. Design of metal-organic framework composites in anti-cancer therapies. Nanoscale 2021, 13, 12102–12118.

    Article  CAS  Google Scholar 

  51. Tan, L. L.; Li, H. W.; Qiu, Y. C.; Chen, D. X.; Wang, X.; Pan, R. Y.; Wang, Y.; Zhang, S. X. A.; Wang, B.; Yang, Y. W. Stimuli-responsive metal-organic frameworks gated by pillar[5]arene supramolecular switches. Chem. Sci. 2015, 6, 1640–1644.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. U213010103 and 51821091), the Natural Science Foundation of Chongqing (No. cstc2020jcyjmsxmX1053), and the Fundamental Research Funds for the Central Universities (Nos. 3102019JC and 31020180QD085). We thank Prof. Ruichan Lv at **dian University for upconversion luminescence measurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Li Tan or Li Shang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Tan, LL., Li, Q. et al. Upconversion nanorods anchored metal-organic frameworks via hierarchical and dynamic assembly for synergistic therapy. Nano Res. 15, 7533–7541 (2022). https://doi.org/10.1007/s12274-022-4324-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4324-4

Keywords

Navigation