Log in

Understanding the roles of carbon in carbon/g-C3N4 based photocatalysts for H2 evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Coupling graphitic carbon nitride (CN) with carbonaceous materials is an effective strategy to improve photocatalytic performance, but the contributions of carbonaceous materials are not fully understood. Herein, a new type of carbon/CN (CCN) complex photocatalyst is synthesized with a 6-fold enhancement of H2 evolution rate compared to that of pristine CN. The role of carbon in photocatalytic H2 evolution reaction is systemically studied and it is experimentally and theoretically revealed that carbon mainly contributes to the improved capability of exciton dissociation and enhanced electric conductivity for charge transfer, leading to an increased population of photo-carriers for photocatalytic reactions. Interestingly, the enhanced light absorption originated from carbon barely generates charge carriers for H2 evolution activity. These new findings will inspire the rational design of carbon-based photocatalysts for efficient solar fuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gust, D.; Moore, T. A.; Moore, A. L. Solar fuels via artificial photosynthesis. Acc. Chem. Res. 2009, 42, 1890–1898.

    Article  CAS  Google Scholar 

  2. Tachibana, Y.; Vayssieres, L.; Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photonics 2012, 6, 511–518.

    Article  CAS  Google Scholar 

  3. Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; **n, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

    Article  CAS  Google Scholar 

  4. Wang, Y.; Wang, X. C.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem., Int. Ed. 2011, 51, 68–89.

    Article  Google Scholar 

  5. Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability. Chem. Rev. 2016, 116, 7159–7329.

    Article  CAS  Google Scholar 

  6. Liao, G. F.; Gong, Y.; Zhang, L.; Gao, H. Y.; Yang, G. J.; Fang, B. Z. Semiconductor polymeric graphitic carbon nitride photocatalysts: The “holy grail” for the photocatalytic hydrogen evolution reaction under visible light. Energy Environ. Sci. 2019, 12, 2080–2147.

    Article  CAS  Google Scholar 

  7. **ang, Q. J.; Yu, J. G; Jaroniec, M. Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 2012, 41, 782–796.

    Article  CAS  Google Scholar 

  8. **ao, M.; Wang, Z. L.; Lyu, M. Q.; Luo, B.; Wang, S. C.; Liu, G.; Cheng, H. M.; Wang, L. Z. Hollow nanostructures for photocatalysis: Advantages and challenges. Adv. Mater. 2019, 31, 1801369.

    Article  Google Scholar 

  9. Xu, Q. L.; Cheng, B.; Yu, J. G.; Liu, G. Making co-condensed amorphous carbon/g-C3N4 composites with improved visible-light photocatalytic H2-production performance using Pt as cocatalyst. Carbon 2017, 118, 241–249.

    Article  CAS  Google Scholar 

  10. Li, K.; **e, X.; Zhang, W. D. Photocatalysts based on g-C3N4-encapsulating carbon spheres with high visible light activity for photocatalytic hydrogen evolution. Carbon 2016, 110, 356–366.

    Article  CAS  Google Scholar 

  11. Baca, M.; Dworczak, M.; Aleksandrzak, M.; Mijowska, E.; Kaleńczuk, R. J.; Zielińska, B. Mesoporous carbon/graphitic carbon nitride spheres for photocatalytic H2 evolution under solar light irradiation. Int. J. Hydrogen Energy 2020, 45, 8618–8628.

    Article  CAS  Google Scholar 

  12. Zhou, W. J.; Jia, J.; Lu, J.; Yang, L. J.; Hou, D. M.; Li, G. Q.; Chen, S. W. Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction. Nano Energy 2016, 28, 29–43.

    Article  CAS  Google Scholar 

  13. Schwab, M. G.; Fassbender, B.; Spiess, H. W.; Thomas, A.; Feng, X. L.; Müllen, K. Catalyst-free preparation of melamine-based microporous polymer networks through schiff base chemistry. J. Am. Chem. Soc. 2009, 131, 7216–7217.

    Article  CAS  Google Scholar 

  14. Lin, X. Q.; Li, X. Z.; Li, F.; Fang, Y. Y.; Tian, M.; An, X. C.; Fu, Y.; **, J.; Ma, J. T. Precious-metal-free Co-Fe-Ox coupled nitrogen-enriched porous carbon nanosheets derived from schiff-base porous polymers as superior electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 2016, 4, 6505–6512.

    Article  CAS  Google Scholar 

  15. Wenderich, K.; Klaassen, A.; Siretanu, I.; Mugele, F.; Mul, G. Sorption-determined deposition of platinum on well-defined platelike WO3. Angew. Chem., Int. Ed. 2014, 53, 12476–12479.

    Article  CAS  Google Scholar 

  16. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  17. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  18. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  19. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

    Article  CAS  Google Scholar 

  20. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  21. Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  22. Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J. O.; Schlögl, R.; Carlsson, J. M. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 2008, 18, 4893–4908.

    Article  CAS  Google Scholar 

  23. Liu, J. T.; Nan, Y.; Chang, X. X.; Li, X. Z.; Fang, Y. Y.; Liu, Y.; Tang, Y.; Wang, X.; Li, R.; Ma, J. T. Hierarchical nitrogen-enriched porous carbon materials derived from Schiff-base networks supported FeCo2O4 nanoparticles for efficient water oxidation. Int. J. Hydrogen Energy 2017, 42, 10802–10812.

    Article  CAS  Google Scholar 

  24. Yu, Y.; Yan, W.; Wang, X. F.; Li, P.; Gao, W. Y.; Zou, H. H.; Wu, S. M.; Ding, K. J. Surface engineering for extremely enhanced charge separation and photocatalytic hydrogen evolution on g-C3N4. Adv. Mater. 2018, 30, 1705060.

    Article  Google Scholar 

  25. Che, W.; Cheng, W. R.; Yao, T.; Tang, F. M.; Liu, W.; Su, H.; Huang, Y. Y.; Liu, Q. H.; Liu, J. K.; Hu, F. C. et al. Fast photoelectron transfer in (Cring)-C3N4 plane heterostructural nanosheets for overall water splitting. J. Am. Chem. Soc. 2017, 139, 3021–3026.

    Article  CAS  Google Scholar 

  26. Zhang, G. G.; Li, G. S.; Lan, Z. A.; Lin, L. H.; Savateev, A.; Heil, T.; Zafeiratos, S.; Wang, X. C.; Antonietti, M. Optimizing optical absorption, exciton dissociation, and charge transfer of a polymeric carbon nitride with ultrahigh solar hydrogen production activity. Angew. Chem., Int. Ed. 2017, 56, 13445–13449.

    Article  CAS  Google Scholar 

  27. Niu, W. H.; Marcus, K.; Zhou, L.; Li, Z.; Shi, L.; Liang, K.; Yang, Y. Enhancing electron transfer and electrocatalytic activity on crystalline carbon-conjugated g-C3N4. ACS Catal. 2018, 8, 1926–1931.

    Article  CAS  Google Scholar 

  28. Zhang, G.; Ji, Q. H.; Wu, Z.; Wang, G. C.; Liu, H. J.; Qu, J. H.; Li, J. H. Facile “spot-heating” synthesis of carbon dots/carbon nitride for solar hydrogen evolution synchronously with contaminant decomposition. Adv. Funct. Mater. 2018, 28, 1706462.

    Article  Google Scholar 

  29. Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2014, 53, 7281–7285.

    Article  CAS  Google Scholar 

  30. Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Du, A. J.; Jaroniec, M.; Qiao, S. Z. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 2014, 5, 3783.

    Article  Google Scholar 

  31. Kang, Y. Y.; Yang, Y. Q.; Yin, L. C.; Kang, X. D.; Wang, L. Z.; Liu, G.; Cheng, H. M. Selective breaking of hydrogen bonds of layered carbon nitride for visible light photocatalysis. Adv. Mater. 2016, 28, 6471–6477.

    Article  CAS  Google Scholar 

  32. Fu, J. W.; Yu, J. G.; Jiang, C. J.; Cheng, B. g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 2018, 8, 1701503.

    Article  Google Scholar 

  33. Wang, H.; Sun, X. S.; Li, D. D.; Zhang, X. D.; Chen, S. C.; Shao, W.; Tian, Y. P.; **e, Y. Boosting hot-electron generation: Exciton dissociation at the order-disorder interfaces in polymeric photocatalysts. J. Am. Chem. Soc. 2017, 139, 2468–2473.

    Article  CAS  Google Scholar 

  34. Tan, H. L.; Wen, X. M.; Amal, R.; Ng, Y. H. BiVO4 {010} and {110} relative exposure extent: Governing factor of surface charge population and photocatalytic activity. J. Phys. Chem. Lett. 2016, 7, 1400–1405.

    Article  CAS  Google Scholar 

  35. Wu, H.; Zheng, Z. K.; Toe, C. Y.; Wen, X. M.; Hart, J. N.; Amal, R.; Ng, Y. H. A pulse electrodeposited amorphous tunnel layer stabilises Cu2O for efficient photoelectrochemical water splitting under visible-light irradiation. J. Mater. Chem. A 2020, 8, 5638–5646.

    Article  CAS  Google Scholar 

  36. Samsudin, M. F. R.; Ullah, H.; Bashiri, R.; Mohamed, N. M.; Sufian, S.; Ng, Y. H. Experimental and DFT insights on microflower g-C3N4/BiVO4 photocatalyst for enhanced photoelectrochemical hydrogen generation from lake water. ACS Sustain. Chem. Eng. 2020, 8, 9393–9403.

    Article  CAS  Google Scholar 

  37. Sun, J. H.; Zhang, J. S.; Zhang, M. W.; Antonietti, M.; Fu, X. Z.; Wang, X. C. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. Nat. Commun. 2012, 3, 1139.

    Article  Google Scholar 

  38. Liu, G. G.; Zhao, G. X.; Zhou, W.; Liu, Y. Y.; Pang, H.; Zhang, H. B.; Hao, D.; Meng, X. G.; Li, P.; Kako, T. et al. In situ bond modulation of graphitic carbon nitride to construct p-n homojunctions for enhanced photocatalytic hydrogen production. Adv. Funct. Mater. 2016, 26, 6822–6829.

    Article  CAS  Google Scholar 

  39. Zhang, Y. J.; Mori, T.; Niu, L.; Ye, J. H. Non-covalent do** of graphitic carbon nitride polymer with graphene: Controlled electronic structure and enhanced optoelectronic conversion. Energy Environ. Sci. 2011, 4, 4517–4521.

    Article  CAS  Google Scholar 

  40. Meek, G. A.; Baczewski, A. D.; Little, D. J.; Levine, B. G. Polaronic relaxation by three-electron bond formation in graphitic carbon nitrides. J. Phys. Chem. C 2014, 118, 4023–4032.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The financial support from Australian Research Council (ARC) through the Discovery and Laureate Fellowship programs is greatly acknowledged. The authors would like to express their appreciations for the support from the Australian National Fabrication Facility-Queensland Node (ANFF-Q) and the Centre for Microscopy and Microanalysis (CMM) from the University of Queensland. The support from the Centre of Advanced Imaging is also highly appreciated. M. X. would like to express her gratitude for the financial support from the Australian Government through the Research Training Program Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Luo or Lianzhou Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ao, M., Jiao, Y., Luo, B. et al. Understanding the roles of carbon in carbon/g-C3N4 based photocatalysts for H2 evolution. Nano Res. 16, 4539–4545 (2023). https://doi.org/10.1007/s12274-021-3897-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3897-7

Keywords

Navigation