Log in

Unveiling the origin of anomalous low-frequency Raman mode in CVD-grown monolayer WS2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Substrates provide the necessary support for scientific explorations of numerous promising features and exciting potential applications in two-dimensional (2D) transition metal dichalcogenides (TMDs). To utilize substrate engineering to alter the properties of 2D TMDs and avoid introducing unwanted adverse effects, various experimental techniques, such as high-frequency Raman spectroscopy, have been used to understand the interactions between 2D TMDs and substrates. However, sample-substrate interaction in 2D TMDs is not yet fully understood due to the lack of systematic studies by techniques that are sensitive to 2D TMD-substrate interaction. This work systematically investigates the interaction between tungsten disulfide (WS2) monolayers and substrates by low-frequency Raman spectroscopy, which is very sensitive to WS2-substrate interaction. Strong coupling with substrates is clearly revealed in chemical vapor deposition (CVD)-grown monolayer WS2 by its low-wavenumber interface mode. It is demonstrated that the enhanced sample-substrate interaction leads to tensile strain on monolayer WS2, which is induced during the cooling process of CVD growth and could be released for monolayer WS2 sample after transfer or fabricated by an annealing-free method such as mechanical exfoliation. These results not only suggest the effectiveness of low-frequency Raman spectroscopy for probing sample-substrate interactions in 2D TMDs, but also provide guidance for the design of high-performance devices with the desired sample-substrate coupling strength based on 2D TMDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, H.; Xu, Z. Q.; Cao, G. Y.; Zhang, Y. P.; Zhou, J. D.; Wang, Z. Y.; Wan, Z. C.; Liu, Z.; Loh, K. P.; Qiu, C. W. et al. Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses. Light: Sci. Appl. 2020, 9, 137.

    Article  CAS  Google Scholar 

  2. Peng, Z. W.; Chen, X. L.; Fan, Y. L.; Srolovitz, D. J.; Lei, D. Y. Strain engineering of 2D semiconductors and graphene: From strain fields to band-structure tuning and photonic applications. Light: Sci. Appl. 2020, 9, 190.

    Article  CAS  Google Scholar 

  3. Zhang, N.; Jiang, X. J.; Fan, J.; Luo, W. W.; **ang, Y. X.; Wu, W.; Ren, M. X.; Zhang, X. Z.; Cai, W.; Xu, J. Experimental observed plasmon near-field response in isolated suspended graphene resonators. Nanotechnology 2019, 30, 505201.

    Article  CAS  Google Scholar 

  4. Zhu, Y.; Sun, X. Q.; Tang, Y. L.; Fu, L.; Lu, Y. R. Two-dimensional materials for light emitting applications: Achievement, challenge and future perspectives. Nano Res. 2021, 14, 1912–1936.

    Article  CAS  Google Scholar 

  5. Cong, C. X.; Shang, J. Z.; Wang, Y. L.; Yu, T. Optical properties of 2D semiconductor WS2. Adv. Opt. Mater. 2018, 6, 1700767.

    Article  CAS  Google Scholar 

  6. Buscema, M.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2. Nano Res. 2014, 7, 561–571.

    Article  CAS  Google Scholar 

  7. Su, L. Q.; Yu, Y. F.; Cao, L. Y.; Zhang, Y. Effects of substrate type and material-substrate bonding on high-temperature behavior of monolayer WS2. Nano Res. 2015, 8, 2686–2697.

    Article  CAS  Google Scholar 

  8. Hosseini, M.; Elahi, M.; Pourfath, M.; Esseni, D. Strain-induced modulation of electron mobility in single-layer transition metal dichalcogenides MX2 (M = Mo, W; X = S, Se). IEEE Trans. Electron Devices 2015, 62, 3192–3198.

    Article  CAS  Google Scholar 

  9. Tan, P. H. Raman Spectroscopy of Two-Dimensional Materials; Springer: Singapore, 2019.

    Book  Google Scholar 

  10. Ji, J. T.; Dong, S.; Zhang, A. M.; Zhang, Q. M. Low-frequency interlayer vibration modes in two-dimensional layered materials. Phys. E 2016, 80, 130–141.

    Article  CAS  Google Scholar 

  11. Zhao, Y. Y.; Luo, X.; Zhang, J.; Wu, J. X.; Bai, X. X.; Wang, M. X.; Jia, J. F.; Peng, H. L.; Liu, Z. F.; Quek, S. Y. et al. Interlayer vibrational modes in few-quintuple-layer Bi2Te3 and Bi2Se3 two-dimensional crystals: Raman spectroscopy and first-principles studies. Phys. Rev. B 2014, 90, 245428.

    Article  CAS  Google Scholar 

  12. Cong, X.; Liu, X. L.; Lin, M. L.; Tan, P. H. Application of Raman spectroscopy to probe fundamental properties of two-dimensional materials. npj 2D Mater. Appl. 2020, 4, 13.

    Article  CAS  Google Scholar 

  13. Puretzky, A. A.; Liang, L. B.; Li, X. F.; **ao, K.; Sumpter, B. G.; Meunier, V.; Geohegan, D. B. Twisted MoSe2 bilayers with variable local stacking and interlayer coupling revealed by low-frequency Raman spectroscopy. ACS Nano 2016, 10, 2736–2744.

    Article  CAS  Google Scholar 

  14. Wang, K.; Huang, B.; Tian, M.; Ceballos, F.; Lin, M. W.; Mahjouri-Samani, M.; Boulesbaa, A.; Puretzky, A. A.; Rouleau, C. M.; Yoon, M. et al. Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy. ACS Nano 2016, 10, 6612–6622.

    Article  CAS  Google Scholar 

  15. Li, X.; Chen, C.; Yang, Y.; Lei, Z.; Xu, H. 2D Re-based transition metal chalcogenides: Progress, challenges, and opportunities. Adv. Sci. 2020, 7, 2002320.

    Article  CAS  Google Scholar 

  16. Wang, Y. L.; Cong, C. X.; Shang, J. Z.; Eginligil, M.; **, Y. Q.; Li, G.; Chen, Y.; Peimyoo, N.; Yu, T. Unveiling exceptionally robust valley contrast in AA- and AB-stacked bilayer WS2. Nanoscale Horiz. 2019, 4, 396–403.

    Article  CAS  Google Scholar 

  17. Cong, C. X.; Shang, J. Z.; Wu, X.; Cao, B. C.; Peimyoo, N.; Qiu, C. Y.; Sun, L. T.; Yu, T. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater. 2014, 2, 131–136.

    Article  CAS  Google Scholar 

  18. Li, X. S.; Zhu, Y. W.; Cai, W. W.; Borysiak, M.; Han, B. Y.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009, 9, 4359–4363.

    Article  CAS  Google Scholar 

  19. Zheng, S. J.; Sun, L. F.; Zhou, X. H.; Liu, F. C.; Liu, Z.; Shen, Z. X.; Fan, H. J. Coupling and interlayer exciton in twist-stacked WS2 bilayers. Adv. Opt. Mater. 2015, 3, 1600–1605.

    Article  CAS  Google Scholar 

  20. Zhao, Y. Y.; Luo, X.; Li, H.; Zhang, J.; Araujo, P. T.; Gan, C. K.; Wu, J.; Zhang, H.; Quek, S. Y.; Dresselhaus, M. S. et al. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 2013, 13, 1007–1015.

    Article  CAS  Google Scholar 

  21. O’Brien, M.; McEvoy, N.; Hanlon, D.; Hallam, T.; Coleman, J. N.; Duesberg, G. S. Map** of low-frequency Raman modes in CVD-grown transition metal dichalcogenides: Layer number, stacking orientation and resonant effects. Sci. Rep. 2016, 6, 19476.

    Article  CAS  Google Scholar 

  22. Chakraborty, B.; Bera, A.; Muthu, D. V. S.; Bhowmick, S.; Waghmare, U. V.; Sood, A. K. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 2012, 85, 161403.

    Article  CAS  Google Scholar 

  23. Lai, Y. H.; Yeh, C. T.; Lin, Y. H.; Hung, W. H. Adsorption and thermal decomposition of H2S on Si(100). Surf. Sci. 2002, 519, 150–156.

    Article  CAS  Google Scholar 

  24. Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Muilenberg, G. E. Handbook of X-Ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Minnesota, 1979.

    Google Scholar 

  25. Wang, X. L.; Gong, Y. J.; Shi, G.; Chow, W. L.; Keyshar, K.; Ye, G. L.; Vajtai, R.; Lou, J.; Liu, Z.; Ringe, E. et al. Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano 2014, 8, 5125–5131.

    Article  CAS  Google Scholar 

  26. Shang, X.; Rao, Y.; Lu, S. S.; Dong, B.; Zhang, L. M.; Liu, X. H.; Li, X.; Liu, Y. R.; Chai, Y. M.; Liu, C. G. Novel WS2/WO3 heterostructured nanosheets as efficient electrocatalyst for hydrogen evolution reaction. Mater. Chem. Phys. 2017, 197, 123–128.

    Article  CAS  Google Scholar 

  27. Zhang, Y.; Zhang, Y. F.; Ji, Q. Q.; Ju, J.; Yuan, H. T.; Shi, J. P.; Gao, T.; Ma, D. L.; Liu, M. X.; Chen, Y. B. et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 2013, 7, 8963–8971.

    Article  CAS  Google Scholar 

  28. Liu, Z.; Amani, M.; Najmaei, S.; Xu, Q.; Zou, X. L.; Zhou, W.; Yu, T.; Qiu, C. Y.; Birdwell, A. G.; Crowne, F. J. et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 2014, 5, 5246.

    Article  Google Scholar 

  29. Sahin, H.; Tongay, S.; Horzum, S.; Fan, W.; Zhou, J.; Li, J.; Wu, J.; Peeters, F. M. Anomalous Raman spectra and thickness-dependent electronic properties of WSe2. Phys. Rev. B 2013, 87, 165409.

    Article  CAS  Google Scholar 

  30. Wang, Y. L.; Cong, C. X.; Yang, W. H.; Shang, J. Z.; Peimyoo, N.; Chen, Y.; Kang, J. Y.; Wang, J. P.; Huang, W.; Yu, T. Strain-induced direct-indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res. 2015, 8, 2562–2572.

    Article  CAS  Google Scholar 

  31. Liu, K. H.; Zhang, L. M.; Cao, T.; **, C. H.; Qiu, D. N.; Zhou, Q.; Zettl, A.; Yang, P. D.; Louie, S. G.; Wang, F. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 2014, 5, 4966.

    Article  CAS  Google Scholar 

  32. van der Zande, A. M.; Kunstmann, J.; Chernikov, A.; Chenet, D. A.; You, Y. M.; Zhang, X. X.; Huang, P. Y.; Berkelbach, T. C.; Wang, L.; Zhang, F. et al. Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett. 2014, 14, 3869–3875.

    Article  CAS  Google Scholar 

  33. **a, M.; Li, B.; Yin, K. B.; Capellini, G.; Niu, G.; Gong, Y. J.; Zhou, W.; Ajayan, P. M.; **e, Y. H. Spectroscopic signatures of AA′ and AB stacking of chemical vapor deposited bilayer MoS2. ACS Nano 2015, 9, 12246–12254.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 62004197 and 61774040), the Ministry of Education of Singapore (No. MOE2019-T2-1-004), the Singapore National Research Foundation under the Competitive Research Programs (No. NRF-CRP-21-2018-0007), the National Key R&D Program of China (No. 2018YFA0703700), the National Young 1000 Talent Plan of China, the Shanghai Municipal Natural Science Foundation (No. 20ZR1403200), the Shanghai Municipal Science and Technology Commission (No. 18JC1410300), the Fudan University-CIOMP Joint Fund (No. FC2018-002), and the Natural Science Foundation of Liaoning Province, China (Nos. 2019-BS-243 and 2019-MS-320).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanlong Wang, Chunxiao Cong or Ting Yu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ang, Q., Yue, X., Wang, Y. et al. Unveiling the origin of anomalous low-frequency Raman mode in CVD-grown monolayer WS2. Nano Res. 14, 4314–4320 (2021). https://doi.org/10.1007/s12274-021-3769-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3769-1

Keywords

Navigation