Log in

BSA stabilized photothermal-fenton reactor with cisplatin for chemo/chemodynamic cascade oncotherapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Cisplatin (CDDP)-based chemotherapy is substantially limited in the clinic due to its high postoperative recurrence rate. Synergy therapy has been proven as a potent approach to minimize recurrence and achieve enhanced treatment effects. Herein, chemotherapy drug CDDP is assembled with the photothermal-Fenton agent of bovine serum albumin (BSA) stabilized gallic acid-functionalized iron nanoparticles (GA-Fe NPs) to achieve chemo/chemodynamic synergistic cascade oncotherapy. The Pt-GA-Fe NPs can be utilized to generate H2O2 via the activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) in the tumor microenvironment (TME), which would then greatly boost H2O2-depending chemodynamic therapy (CDT). The generated cytotoxic reactive oxygen species (hydroxyl radicals, ·OH) and the depletion of glutathione (GSH) would further promote CDDP-induced DNA damage. Moreover, benefiting from the absorption in the near-infrared (NIR) region, Pt-GA-Fe NPs exhibit excellent photothermal conversion efficiency (η = 45.5%) and allow photoacoustic imaging (PAI) guided photothermal therapy (PTT). In vitro and in vivo experiments show that synergy therapy can effectively kill cancer cells and successfully cure cancer without systemic toxicity. The work highlights a new type of therapeutic agent based on CDDP with the ability of H2O2 self-generation, thermal responsiveness, and enhanced CDT effects for applications in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, Z. P.; **e, Y.; **ong, Y.; Liu, S. L.; Qiu, C.; Zhu, Z. H.; Mao, H.; Yu, M.; Wang, X. Y. TLR 7/8 agonist reverses oxaliplatin resistance in colorectal cancer via directing the myeloid-derived suppressor cells to tumoricidal M1-macrophages. Cancer Lett. 2020, 469, 173–185.

    Article  CAS  Google Scholar 

  2. Yang, C. X.; **ng, L.; Chang, X.; Zhou, T. J.; Bi, Y. Y.; Yu, Z. Q.; Zhang, Z. Q.; Jiang, H. L. Synergistic platinum (II) prodrug nanoparticles for enhanced breast cancer therapy. Mol. Pharmaceutics 2020, 17, 1300–1309.

    Article  CAS  Google Scholar 

  3. Lin, Y. X.; Wang, Y.; An, H. W.; Qi, B. W.; Wang, J. Q.; Wang, L.; Shi, J. J.; Mei, L.; Wang, H. Peptide-based autophagic gene and cisplatin co-delivery systems enable improved chemotherapy resistance. Nano Lett. 2019, 19, 2968–2978.

    Article  CAS  Google Scholar 

  4. Burger, H.; Loos, W. J.; Eechoute, K.; Verweij, J.; Mathijssen, R. H. J.; Wiemer, E. A. C. Drug transporters of platinum-based anticancer agents and their clinical significance. Drug Resist. Updat. 2011, 14, 22–34.

    Article  CAS  Google Scholar 

  5. Ling, X.; Tu, J. S.; Wang, J. Q.; Shajii, A.; Kong, N.; Feng, C.; Zhang, Y.; Yu, M.; **e, T.; Bharwani, Z. et al. Glutathione-responsive prodrug nanoparticles for effective drug delivery and cancer therapy. ACS Nano 2019, 13, 357–370.

    Article  CAS  Google Scholar 

  6. Qiao, Y. T.; Wan, J. Q.; Zhou, L. Q.; Ma, W.; Yang, Y. Y.; Luo, W. X.; Yu, Z. Q.; Wang, H. X. Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2019, 11, e1527.

    Article  Google Scholar 

  7. Agostinis, P.; Berg, K.; Cengel, K. A.; Foster, T. H.; Girotti, A. W.; Gollnick, S. O.; Hahn, S. M.; Hamblin, M. R.; Juzeniene, A.; Kessel, D. et al. Photodynamic therapy of cancer: An update. CA:Cancer J. Clin. 2011, 61, 250–281.

    Google Scholar 

  8. Wang, Z. Z.; Zhang, Y.; Ju, E. G.; Liu, Z.; Cao, F. F.; Chen, Z. W.; Ren, J. S.; Qu, X. G. Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nat. Commun. 2018, 9, 3334.

    Article  Google Scholar 

  9. Son, S.; Kim, J. H.; Wang, X. W.; Zhang, C. L.; Yoon, S. A.; Shin, J.; Sharma, A.; Lee, M. H.; Cheng, L.; Wu, J. S. et al. Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem. Soc. Rev. 2020, 49, 3244–3261.

    Article  CAS  Google Scholar 

  10. Ranji-Burachaloo, H.; Reyhani, A.; Gurr, P. A.; Dunstan, D. E.; Qiao, G. G. Combined Fenton and starvation therapies using hemoglobin and glucose oxidase. Nanoscale 2019, 11, 5705–5716.

    Article  CAS  Google Scholar 

  11. Cheng, Q.; Yu, W. Y.; Ye, J. J.; Liu, M. D.; Liu, W. L.; Zhang, C.; Zhang, C.; Feng, J.; Zhang, X. Z. Nanotherapeutics interfere with cellular redox homeostasis for highly improved photodynamic therapy. Biomaterials 2019, 224, 119500.

    Article  CAS  Google Scholar 

  12. Yu, M.; Duan, X. H.; Cai, Y. J.; Zhang, F.; Jiang, S. Q.; Han, S. S.; Shen, J.; Shuai, X. T. Multifunctional nanoregulator reshapes immune microenvironment and enhances immune memory for tumor immunotherapy. Adv. Sci. 2019, 6, 1900037.

    Article  Google Scholar 

  13. Gajewski, T. F.; Schreiber, H.; Fu, Y. X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 2013, 14, 1014–1022.

    Article  CAS  Google Scholar 

  14. Zhang, L. L.; Liang, D. W.; Wang, Y.; Li, D.; Zhang, J. H.; Wu, L.; Feng, M. K.; Yi, F.; Xu, L. Z.; Lei, L. D. et al. Caged circular SiRNAs for photomodulation of gene expression in cells and mice. Chem. Sci. 2018, 9, 44–51.

    Article  CAS  Google Scholar 

  15. Zhu, J. W.; Wang, W. L.; Wang, X. R.; Zhong, L. P.; Song, X. J.; Wang, W. J.; Zhao, Y. X.; Dong, X. C. Multishell nanoparticles with “linkage mechanism” for thermal responsive photodynamic and gas synergistic therapy. Adv. Healthc. Mater. 2021, 10, 2002038.

    Article  CAS  Google Scholar 

  16. Han, R. C.; Zhao, M.; Wang, Z. W.; Liu, H. L.; Zhu, S. C.; Huang, L.; Wang, Y.; Wang, L. J.; Hong, Y. K.; Sha, Y. L. et al. Superefficient in vivo two-photon photodynamic therapy with a gold nanocluster as a type I photosensitizer. ACS Nano 2020, 14, 9532–9544.

    Article  CAS  Google Scholar 

  17. Huang, X. Y.; Gu, R.; Li, J. W.; Yang, N.; Cheng, Z. J.; Si, W. L.; Chen, P.; Huang, W.; Dong, X. C. Diketopyrrolopyrrole-Au (I) as singlet oxygen generator for enhanced tumor photodynamic and photothermal therapy. Sci. China Chem. 2020, 63, 55–64.

    Article  CAS  Google Scholar 

  18. Zhang, M.; Song, R. X.; Liu, Y. Y.; Yi, Z. G.; Meng, X. F.; Zhang, J. W.; Tang, Z. M.; Yao, Z. W.; Liu, Y.; Liu, X. G. et al. Calcium-overload-mediated tumor therapy by calcium peroxide nanoparticles. Chem 2019, 5, 2171–2182.

    Article  CAS  Google Scholar 

  19. Lin, L. S.; Huang, T.; Song, J. B.; Ou, X. Y.; Wang, Z. T.; Deng, H. Z.; Tian, R.; Liu, Y. J.; Wang, J. F.; Liu, Y. et al. Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy. J. Am. Chem. Soc. 2019, 141, 9937–9945.

    Article  CAS  Google Scholar 

  20. Yang, N.; **ao, W. Y.; Song, X. J.; Wang, W. J.; Dong, X. C. Recent advances in tumor microenvironment hydrogen peroxide-responsive materials for cancer photodynamic therapy. Nano-Micro Lett. 2020, 12, 15.

    Article  CAS  Google Scholar 

  21. Cao, C. Y.; Yang, N.; Dai, H. M.; Huang, H.; Song, X. J.; Zhang, Q.; Dong, X. C. Recent advances in phase change material based nanoplatforms for cancer therapy. Nanoscale Adv. 2021, 3, 106–122.

    Article  CAS  Google Scholar 

  22. Cao, C. Y.; Ge, W.; Yin, J. J.; Yang, D. L.; Wang, W. J.; Song, X. J.; Hu, Y. L.; Yin, J.; Dong, X. C. Mesoporous silica supported silver-bismuth nanoparticles as photothermal agents for skin infection synergistic antibacterial therapy. Small 2020, 16, 2000436.

    Article  CAS  Google Scholar 

  23. Ranji-Burachaloo, H.; Gurr, P. A.; Dunstan, D. E.; Qiao, G. G. Cancer treatment through nanoparticle-facilitated Fenton reaction. ACS Nano 2018, 12, 11819–11837.

    Article  CAS  Google Scholar 

  24. Ma, P. A.; **ao, H. H.; Yu, C.; Liu, J. H.; Cheng, Z. Y.; Song, H. Q.; Zhang, X. Y.; Li, C. X.; Wang, J. Q.; Gu, Z. et al. Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species. Nano Lett. 2017, 17, 928–937.

    Article  CAS  Google Scholar 

  25. Liu, Y.; Zhen, W. Y.; **, L. G.; Zhang, S. T.; Sun, G. Y.; Zhang, T. Q.; Xu, X.; Song, S. Y.; Wang, Y. H.; Liu, J. H. et al. All-in-one theranostic nanoagent with enhanced reactive oxygen species generation and modulating tumor microenvironment ability for effective tumor eradication. ACS Nano 2018, 12, 4886–4893.

    Article  CAS  Google Scholar 

  26. Zou, J. H.; Xue, L.; Yang, N.; Ren, Y. F.; Fan, Z.; Wang, W. J.; Si, W. L.; Zhang, Y. W.; Huang, W.; Dong, X. C. A glutathione responsive pyrrolopyrrolidone nanotheranostic agent for turn-on fluorescence imaging guided photothermal/photodynamic cancer therapy. Mater. Chem. Front. 2019, 3, 2143–2150.

    Article  CAS  Google Scholar 

  27. Yamakoshi, Y.; Umezawa, N.; Ryu, A.; Arakane, K.; Miyata, N.; Goda, Y.; Masumizu, T.; Nagano, T. Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2−· versus 1O2. J. Am. Chem. Soc. 2003, 125, 12803–12809.

    Article  CAS  Google Scholar 

  28. Zhang, J. H.; Li, H. C.; Wu, Q. P.; Chen, Y. M.; Deng, Y. C.; Yang, Z. C.; Zhang, L. Y.; Liu, B. Tumoral NOX4 recruits M2 tumor-associated macrophages via ROS/PI3K signaling-dependent various cytokine production to promote NSCLC growth. Redox Biol. 2019, 22, 101116.

    Article  CAS  Google Scholar 

  29. Skonieczna, M.; Hejmo, T.; Poterala-Hejmo, A.; Cieslar-Pobuda, A.; Buldak, R. J. NADPH oxidases: Insights into selected functions and mechanisms of action in cancer and stem cells. Oxid. Med. Cell. Longev. 2017, 2017, 9420539.

    Article  Google Scholar 

  30. Dixon, S. J.; Stockwell, B. R. The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol. 2014, 10, 9–17.

    Article  CAS  Google Scholar 

  31. Luna-Vargas, M. P. A.; Chipuk, J. E. The deadly landscape of proapoptotic BCL-2 proteins in the outer mitochondrial membrane. FEBS J. 2016, 283, 2676–2689.

    Article  CAS  Google Scholar 

  32. Circu, M. L.; Aw, T. Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med. 2010, 48, 749–762.

    Article  CAS  Google Scholar 

  33. **, Q. T.; Zhu, W. J.; Jiang, D. W.; Zhang, R.; Kutyreff, C. J.; Engle, J. W.; Huang, P.; Cai, W. B.; Liu, Z.; Cheng, L. Ultra-small iron-gallic acid coordination polymer nanoparticles for chelator-free labeling of 64Cu and multimodal imaging-guided photothermal therapy. Nanoscale 2017, 9, 12609–12617.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by National Natural Science Foundation (NNSF) of China (Nos. 61775095, 61935004, and 51803091), Jiangsu Province Policy Guidance Plan (No. BZ2019014), Natural Science Foundation of Jiangsu Province (No. BK20200092), Natural Science Foundation of Shandong Province (No. ZR2020KB018), and “Taishan scholars” construction special fund of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuejiao Song, **aozhou Mou or **aochen Dong.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, N., Zhang, T., Cao, C. et al. BSA stabilized photothermal-fenton reactor with cisplatin for chemo/chemodynamic cascade oncotherapy. Nano Res. 15, 2235–2243 (2022). https://doi.org/10.1007/s12274-021-3758-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3758-4

Keywords

Navigation