Log in

Boron doped graphdiyne: A metal-free peroxidase mimetic nanozyme for antibacterial application

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The abuse of conventional antibiotics leads to increasing bacterial resistance. Nanozyme is a new kind of ultra-efficient and safe nanomaterial with intrinsic enzyme-like activities, showing remarkable potential as a next generation nanobactericide. Graphdiyne (GDY) is a burgeoning two-dimensional (2D) carbon allotrope with intriguing physicochemical properties, holding a great promise as a metal-free nanozyme. In this study, a boron doped GDY nanosheet (B-GDY) was constructed to simulate the performance of peroxidase (POD). By promoting the decomposition of H2O2 to produce reactive oxygen species (ROS), the bactericidal efficacies against both Gram-positive and Gram-negative bacteria were substantially enhanced attributed to the extremely high catalytic activity of B-GDY. In-depth density functional theory (DFT) calculations illuminate that do** of boron can introduce more active B-defect sites as well as lower Gibbs free energy during the H2O2 decomposition reaction. Notably, B-GDY contributes to significant wound healing and excellent biocompatibility, reducing the biological burden. The design of this nanozyme opens a new avenue for the development of alternative antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reverter, M.; Sarter, S.; Caruso, D.; Avarre, J. C.; Combe, M.; Pepey, E.; Pouyaud, L.; Vega-Heredía, S.; de Verdal, H.; Gozlan, R. E. Aquaculture at the crossroads of global warming and antimicrobial resistance. Nat. Commun. 2020, 11, 1870.

    Article  CAS  Google Scholar 

  2. Lakemeyer, M.; Zhao, W. N.; Mandl, F. A.; Hammann, P.; Sieber, S. A. Thinking outside the box—novel antibacterials to tackle the resistance crisis. Angew. Chem., Int. Ed. 2018, 57, 14440–14475.

    Article  CAS  Google Scholar 

  3. Van Boeckel, T. P.; Gandra, S.; Ashok, A.; Caudron, Q.; Grenfell, B. T.; Levin, S. A.; Laxminarayan, R. Global antibiotic consumption 2000 to 2010: An analysis of national pharmaceutical sales data. Lancet Infect. Dis. 2014, 14, 742–750.

    Article  Google Scholar 

  4. WHO. The top 10 causes of death[Online]. WHO: Geneva, 2020; https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed March 1, 2021).

  5. Willyard, C. Drug-resistant bacteria ranked: World Health Organization hopes list will drive development of much-needed antibiotics. Nature 2017, 543, 15.

    Article  CAS  Google Scholar 

  6. Ding, X. K.; Duan, S.; Ding, X. J.; Liu, R. H.; Xu, F. J. Versatile antibacterial materials: An emerging arsenal for combatting bacterial pathogens. Adv. Funct. Mater. 2018, 28, 1802140.

    Article  Google Scholar 

  7. Gupta, A.; Mumtaz, S.; Li, C. H.; Hussain, I.; Rotello, V. M. Combatting antibiotic-resistant bacteria using nanomaterials. Chem. Soc. Rev. 2019, 48, 415–427.

    Article  Google Scholar 

  8. Wang, Y.; Yang, Y. N.; Shi, Y. R.; Song, H.; Yu, C. Z. Antibiotic-free antibacterial strategies enabled by nanomaterials: Progress and perspectives. Adv. Mater. 2020, 32, 1904106.

    Article  CAS  Google Scholar 

  9. Kotov, N. A. Inorganic nanoparticles as protein mimics. Science 2010, 330, 188–189.

    Article  CAS  Google Scholar 

  10. Wei, H.; Wang, E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

    Article  CAS  Google Scholar 

  11. Lin, Y. H.; Ren, J. S.; Qu, X. G. Catalytically active nanomaterials: A promising candidate for artificial enzymes. Acc. Chem. Res. 2014, 47, 1097–1105.

    Article  CAS  Google Scholar 

  12. Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076.

    Article  CAS  Google Scholar 

  13. Wang, H.; Wan, K. W.; Shi, X. H. Recent advances in nanozyme research. Adv. Mater. 2019, 31, 1805368.

    Article  CAS  Google Scholar 

  14. Gao, L. Z.; Fan, K. L.; Yan, X. Y. Iron oxide nanozyme: A multifunctional enzyme mimetic for biomedical applications. Theranostics 2017, 7, 3207–3227.

    Article  CAS  Google Scholar 

  15. Ye, H. H.; **, Z.; Magloire, K.; **a, X. H. Noble-metal nanostructures as highly efficient peroxidase mimics. Chem. Nano. Mat. 2019, 5, 860–868.

    CAS  Google Scholar 

  16. Sun, H. J.; Zhou, Y.; Ren, J. S.; Qu, X. G. Carbon nanozymes: Enzymatic properties, catalytic mechanism, and applications. Angew. Chem., Int. Ed. 2018, 57, 9224–9237.

    Article  CAS  Google Scholar 

  17. Jiang, D. W.; Ni, D. L.; Rosenkrans, Z. T.; Huang, P.; Yan, X. Y.; Cai, W. B. Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 2019, 48, 3683–3704.

    Article  CAS  Google Scholar 

  18. Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.

    Article  CAS  Google Scholar 

  19. Zhang, X. L.; Li, G. L.; Chen, G.; Wu, D.; Zhou, X. X.; Wu, Y. N. Single-atom nanozymes: A rising star for biosensing and biomedicine. Coord. Chem. Rev. 2020, 418, 213376.

    Article  CAS  Google Scholar 

  20. Xu, B. L.; Wang, H.; Wang, W. W.; Gao, L. Z.; Li, S. S.; Pan, X. T.; Wang, H. Y.; Yang, H. L.; Meng, X. Q.; Wu, Q. W. et al. A singleatom nanozyme for wound disinfection applications. Angew. Chem., Int. Ed. 2019, 58, 4911–4916.

    Article  CAS  Google Scholar 

  21. **, J. Q.; Wei, G.; An, L. F.; Xu, Z. B.; Xu, Z. L.; Fan, L.; Gao, L. Z. Copper/carbon hybrid nanozyme: Tuning catalytic activity by the copper state for antibacterial therapy. Nano Lett. 2019, 19, 7645–7654.

    Article  CAS  Google Scholar 

  22. Shan, J. Y.; Li, X.; Yang, K. L.; **u, W. J.; Wen, Q. R.; Zhang, Y. Q.; Yuwen, L. H.; Weng, L. X.; Teng, Z. G.; Wang, L. H. Efficient bacteria killing by Cu2WS4 nanocrystals with enzyme-like properties and bacteria-binding ability. ACS Nano 2019, 13, 13797–13808.

    Article  CAS  Google Scholar 

  23. **ao, S. J.; Wang, L. Z.; Yuan, M. Y.; Huang, X. H.; Ding, J. H.; Zhang, L. Peroxidase-mimetic and fenton-like activities of molybdenum oxide quantum dots. ChemistrySelect 2020, 5, 10149–10155.

    Article  CAS  Google Scholar 

  24. Wang, W. S.; Li, B. L.; Yang, H. L.; Lin, Z. F.; Chen, L. L.; Li, Z.; Ge, J. Y.; Zhang, T.; **a, H.; Li, L. H. et al. Efficient elimination of multidrug-resistant bacteria using copper sulfide nanozymes anchored to graphene oxide nanosheets. Nano Res. 2020, 13, 2156–2164.

    Article  CAS  Google Scholar 

  25. Shan, J. Y.; Yang, K. L.; **u, W. J.; Qiu, Q.; Dai, S. L.; Yuwen, L. H.; Weng, L. X.; Teng, Z. G.; Wang, L. H. Cu2MoS4 nanozyme with NIR-II light enhanced catalytic activity for efficient eradication of multidrug-resistant bacteria. Small 2020, 16, 2001099.

    Article  CAS  Google Scholar 

  26. Wang, L. W.; Gao, F. N.; Wang, A. Z.; Chen, X. Y.; Li, H.; Zhang, X.; Zheng, H.; Ji, R.; Li, B.; Yu, X. et al. Defect-rich adhesive molybdenum disulfide/rGO vertical heterostructures with enhanced nanozyme activity for smart bacterial killing application. Adv. Mater. 2020, 32, 2005423.

    Article  CAS  Google Scholar 

  27. Ma, L.; Jiang, F. B.; Fan, X.; Wang, L. Y.; He, C.; Zhou, M.; Li, S.; Luo, H. R.; Cheng, C.; Qiu, L. Metal-organic-framework-engineered enzyme-mimetic catalysts. Adv. Mater. 2020, 32, 2003065.

    Article  CAS  Google Scholar 

  28. Zhang, Y.; Li, D. X.; Tan, J. S.; Chang, Z. S.; Liu, X. Y.; Ma, W. S.; Xu, Y. H. Near-infrared regulated nanozymatic/photothermal/photodynamic triple-therapy for combating multidrug-resistant bacterial infections via oxygen-vacancy molybdenum trioxide nanodots. Small 2021, 17, 2005739.

    Article  CAS  Google Scholar 

  29. Wang, T.; Bai, Q.; Zhu, Z. L.; **ao, H. L.; Jiang, F. Y.; Du, F. L.; Yu, W. W.; Liu, M. H.; Sui, N. Graphdiyne-supported palladium-iron nanosheets: A dual-functional peroxidase mimetic nanozyme for glutathione detection and antibacterial application. Chem. Eng. J. 2021, 413, 127537.

    Article  CAS  Google Scholar 

  30. Okazoe, S.; Yasaka, Y.; Kudo, M.; Maeno, H.; Murakami, Y.; Kimura, Y. Synthesis of zero-valent iron nanoparticles via laser ablation in a formate ionic liquid under atmospheric conditions. Chem. Commun. 2018, 54, 7834–7837.

    Article  CAS  Google Scholar 

  31. Nugraha, A. D.; Wulandari, I. O.; Rahayu, L. B. H.; Riva’i, I.; Santojo, D. J. D. H.; Sabarudin, A. One-pot synthesis and surface modification of Fe3O4 nanoparticles using polyvinyl alcohol by coprecipitation and ultrasonication methods. IOP Conf. Ser.: Mater. Sci. Eng. 2018, 299, 012066.

    Article  Google Scholar 

  32. Arami, H.; Khandhar, A.; Liggitt, D.; Krishnan, K. M. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem. Soc. Rev. 2015, 44, 8576–8607.

    Article  CAS  Google Scholar 

  33. Zhao, F.; Zhao, Y.; Liu, Y.; Chang, X. L.; Chen, C. Y.; Zhao, Y. L. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 2011, 7, 1322–1337.

    Article  CAS  Google Scholar 

  34. Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J.; Zhu, D. B. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256–3258.

    Article  CAS  Google Scholar 

  35. Li, Y. J.; Xu, L.; Liu, H. H.; Li, Y. L. Graphdiyne and graphyne: From theoretical predictions to practical construction. Chem. Soc. Rev. 2014, 43, 2572–2586.

    Article  CAS  Google Scholar 

  36. Huang, C. S.; Li, Y. J.; Wang, N.; Xue, Y. R.; Zuo, Z. C.; Liu, H. B.; Li, Y. L. Progress in research into 2D graphdiyne-based materials. Chem. Rev. 2018, 118, 7744–7803.

    Article  CAS  Google Scholar 

  37. Jia, Z.; Li, Y.; Zuo, Z.; Liu, H.; Huang, C.; Li, Y. Synthesis and properties of 2D carbon-graphdiyne. Acc. Chem. Res. 2017, 50, 2470–2478.

    Article  CAS  Google Scholar 

  38. Gao, X.; Liu, H. B.; Wang, D.; Zhang, J. Graphdiyne: Synthesis, properties, and applications. Chem. Soc. Rev. 2019, 48, 908–936.

    Article  CAS  Google Scholar 

  39. Yu, H. D.; Xue, Y. R.; Li, Y. L. Graphdiyne and its assembly architectures: Synthesis, functionalization, and applications. Adv. Mater. 2019, 31, 1803101.

    Article  CAS  Google Scholar 

  40. Long, M. Q.; Tang, L.; Wang, D.; Li, Y. L.; Shuai, Z. G. Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: Theoretical predictions. ACS Nano 2011, 5, 2593–2600.

    Article  CAS  Google Scholar 

  41. Zhang, S. S.; Cai, Y. J.; He, H.Y.; Zhang, Y. Q.; Liu, R. J.; Cao, H. B.; Wang, M.; Liu, J. J.; Zhang, G. J.; Li, Y. L. et al. Heteroatom doped graphdiyne as efficient metal-free electrocatalyst for oxygen reduction reaction in alkaline medium. J. Mater. Chem. A 2016, 4, 4738–4744.

    Article  CAS  Google Scholar 

  42. Lv, Q.; Si, W. Y.; Yang, Z.; Wang, N.; Tu, Z. Y.; Yi, Y. P.; Huang, C. S.; Jiang, L.; Zhang, M. J.; He, J. J. et al. Nitrogen-doped porous graphdiyne: A highly efficient metal-free electrocatalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2017, 9, 29744–29752.

    Article  CAS  Google Scholar 

  43. Wang, N.; Li, X. D.; Tu, Z. Y.; Zhao, F. H.; He, J. J.; Guan, Z. Y.; Huang, C. S.; Yi, Y. P.; Li, Y. L. Synthesis and electronic structure of boron-graphdiyne with an sp-hybridized carbon skeleton and its application in sodium storage. Angew. Chem., Int. Ed. 2018, 57, 3968–3973.

    Article  CAS  Google Scholar 

  44. Yu, H. D.; Xue, Y. R.; Hui, L.; Zhang, C.; Zhao, Y. J.; Li, Z. B.; Li, Y. L. Controlled growth of MoS2 nanosheets on 2D N-doped graphdiyne nanolayers for highly associated effects on water reduction. Adv. Funct. Mater. 2018, 28, 1707564.

    Article  Google Scholar 

  45. Zhao, Y. S.; Wan, J. W.; Yao, H. Y.; Zhang, L. J.; Lin, K. F.; Wang, L.; Yang, N. L.; Liu, D. B.; Song, L.; Zhu, J. et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat. Chem. 2018, 10, 924–931.

    Article  CAS  Google Scholar 

  46. Gu, J. X.; Magagula, S.; Zhao, J. X.; Chen, Z. F. Boosting ORR/OER activity of graphdiyne by simple heteroatom do**. Small Methods 2019, 3, 1800550.

    Article  Google Scholar 

  47. Zhao, J.; Chen, Z.; Zhao, J. X. Metal-free graphdiyne doped with sp-hybridized boron and nitrogen atoms at acetylenic sites for high-efficiency electroreduction of CO2 to CH4 and C2H4. J. Mater. Chem. A 2019, 7, 4026–4035.

    Article  CAS  Google Scholar 

  48. Chen, X. Z.; Ong, W. J.; Kong, Z. Z.; Zhao, X. J.; Li, N. Probing the active sites of site-specific nitrogen do** in metal-free graphdiyne for electrochemical oxygen reduction reactions. Sci. Bull. 2020, 65, 45–54.

    Article  CAS  Google Scholar 

  49. Liu, J. M.; Chen, C. Y.; Zhao, Y. L. Progress and prospects of graphdiyne-based materials in biomedical applications. Adv. Mater. 2019, 31, 1804386.

    Article  CAS  Google Scholar 

  50. Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; **, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.

    Article  CAS  Google Scholar 

  51. Hames, D.; Hooper, N. Instant Notes in Biochemistry; 3rd ed. Taylor & Francis: London, 2005; pp 460.

    Google Scholar 

  52. Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

    Article  CAS  Google Scholar 

  53. Cleland, W. W. Derivation of rate equations for multisite **-Pong mechanisms with **-Pong reactions at one or more sites. J. Biol. Chem. 1973, 248, 8353–8355.

    Article  CAS  Google Scholar 

  54. Berglund, G. I.; Carlsson, G. H.; Smith, A. T.; Szöke, H.; Henriksen, A.; Hajdu, J. The catalytic pathway of horseradish peroxidase at high resolution. Nature 2002, 417, 463–468.

    Article  CAS  Google Scholar 

  55. Li, J. N.; Liu, W. Q.; Wu, X. C.; Gao, X. F. Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials 2015, 48, 37–44.

    Article  Google Scholar 

  56. Kim, M. S.; Cho, S.; Joo, S. H.; Lee, J.; Kwak, S. K.; Kim, M. I.; Lee, J. N- and B-codoped graphene: A strong candidate to replace natural peroxidase in sensitive and selective bioassays. ACS Nano 2019, 13, 4312–4321.

    Article  CAS  Google Scholar 

  57. Wang, X. W.; Fan, L. X.; Cheng, L.; Sun, Y. B.; Wang, X. Y.; Zhong, X. Y.; Shi, Q. Q.; Gong, F.; Yang, Y.; Ma, Y. et al. Biodegradable nickel disulfide nanozymes with GSH-depleting function for high-efficiency photothermal-catalytic antibacterial therapy. iScience 2020, 23, 101281.

    Article  CAS  Google Scholar 

  58. Wu, B. B.; Li, Y.; Su, K.; Tan, L.; Liu, X. M.; Cui, Z. D.; Yang, X. J.; Liang, Y. Q.; Li, Z. Y.; Zhu, S. L. et al. The enhanced photocatalytic properties of MnO2/g-C3N4 heterostructure for rapid sterilization under visible light. J. Hazard. Mater. 2019, 377, 227–236.

    Article  CAS  Google Scholar 

  59. Winterbourn, C. C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 2008, 4, 278–286.

    Article  CAS  Google Scholar 

  60. Steinberg, B. E.; Grinstein, S. Unconventional roles of the NADPH oxidase: Signaling, ion homeostasis, and cell death. Science’s STKE 2007, 2007, pe11.

    Google Scholar 

  61. Tu, Y. S.; Lv, M.; **u, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z. R.; Huang, Q.; Fan, C. H.; Fang, H. P. et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. 2013, 8, 594–601.

    Article  CAS  Google Scholar 

  62. Zhu, Z. L.; Bai, Q.; Li, S.; Li, S. H.; Liu, M. H.; Du, F. L.; Sui, N.; Yu, W. W. Antibacterial activity of graphdiyne and graphdiyne oxide. Small 2020, 16, 2001440.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Prof. Dongqin Yang (Fudan University) for kindly providing the animal experiments. Animal experiments and care were approved by the Animal Care and Use Committee of Fudan University. This work was supported by the National Natural Science Foundation of China (Nos. 31800800, 21790052, and 21501106), Natural Science Foundation of Shandong Province China (Nos. ZR2019BC101 and ZR2020MB026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lina Wang, Zhiling Zhu, Ning Sui or ** Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, X., Bai, Q., Wang, L. et al. Boron doped graphdiyne: A metal-free peroxidase mimetic nanozyme for antibacterial application. Nano Res. 15, 1446–1454 (2022). https://doi.org/10.1007/s12274-021-3685-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3685-4

Keywords

Navigation