Log in

Embedding ultrasmall Ag nanoclusters in Luria-Bertani extract via light irradiation for enhanced antibacterial activity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ultrasmall silver nanoclusters (Ag NCs) with rich surface chemistry and good biocompatibility are promising in antibacterial application, however, further development of Ag NCs for practical settings has been constrained by their relatively weak antibacterial activity. Using the nutritionally-rich medium for bacteria (e.g., Luria-Bertani (LB) medium) to coat active Ag NCs could further improve their antibacterial activity. Here, we provide a delicate design of a highly efficient Ag NCs@ELB antibacterial agent (ELB denotes the extract of LB medium) by anchoring Ag NCs inside the ELB species via light irradiation. The as-designed Ag NCs with bacterium-favored nutrients on the surface can be easily swallowed by the bacteria, boosting the production of the intracellular reactive oxygen species (ROS, about 2-fold of that in the pristine Ag NCs). Subsequently, a higher concentration of ROS generated in Ag NCs@ELB leads to enhanced antibacterial activity, and enables to reduce the colony forming units (CFU) of both gram-positive and gram-negative bacteria with 3–4 orders of magnitude less than that treated with the pristine Ag NCs. In addition, the Ag NCs@ELB also shows good biocompatibility. This study suggests that surface engineering of active species (e.g., Ag NCs) with nutritionally-rich medium of the bacteria is an efficient way to improve their antibacterial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zheng, K. Y.; Setyawati, M. I.; Leong, D. T.; **e, J. P. Antimicrobial silver nanomaterials. Coord. Chem. Rev.2018, 357, 1–17.

    CAS  Google Scholar 

  2. Chernousova, S.; Epple, M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem., Int. Ed.2013, 52, 1636–1653.

    CAS  Google Scholar 

  3. **u, Z. M.; Zhang, Q. B.; Puppala, H. L.; Colvin, V. L.; Alvarez, P. J. J. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett.2012, 12, 4271–4275.

    CAS  Google Scholar 

  4. Le Ouay, B.; Stellacci, F. Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today2015, 10, 339–354.

    CAS  Google Scholar 

  5. Dutta, P.; Wang, B. Zeolite-supported silver as antimicrobial agents. Coord. Chem. Rev.2019, 383, 1–29.

    CAS  Google Scholar 

  6. Franci, G.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver nanoparticles as potential antibacterial agents. Molecules2015, 20, 8856–8874.

    CAS  Google Scholar 

  7. Lansdown, A. B. G. A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices. Adv. Pharmacol. Sci.2010, 2010, 910686.

    Google Scholar 

  8. Javani, S.; Lorca, R.; Latorre, A.; Flors, C.; Cortajarena, A. L.; Somoza, A. Antibacterial activity of DNA-stabilized silver nanoclusters tuned by oligonucleotide sequence. ACS Appl. Mater. Interfaces2016, 8, 10147–10154.

    CAS  Google Scholar 

  9. Sukhorukova, I. V.; Sheveyko, A. N.; Shvindina, N. V.; Denisenko, E. A.; Ignatov, S. G.; Shtansky, D. V. Approaches for controlled Ag+ ion release: Influence of surface topography, roughness, and bactericide content. ACS Appl. Mater. Interfaces2017, 9, 4259–4271.

    CAS  Google Scholar 

  10. Liu, J. Y.; Sonshine, D. A.; Shervani, S.; Hurt, R. H. Controlled release of biologically active silver from nanosilver surfaces. ACS Nano2010, 4, 6903–6913.

    CAS  Google Scholar 

  11. Du, W. J.; **, S.; **ong, L.; Chen, M.; Zhang, J.; Zou, X. J.; Pei, Y.; Wang, S. X.; Zhu, M. Z. Ag50(Dppm)6(SR)30 and its homologue AuxAg50−x(Dppm)6(SR)30 alloy nanocluster: Seeded growth, structure determination, and differences in properties. J. Am. Chem. Soc.2017, 139, 1618–1624.

    CAS  Google Scholar 

  12. Yang, H. Y.; Wang, Y.; Chen, X.; Zhao, X. J.; Gu, L.; Huang, H. Q.; Yan, J. Z.; Xu, C. F.; Li, G.; Wu, J. C. et al. Plasmonic twinned silver nanoparticles with molecular precision. Nat. Commun.2016, 7, 12809.

    CAS  Google Scholar 

  13. Wang, Z. Y.; Wang, M. Q.; Li, Y. L.; Luo, P.; Jia, T. T.; Huang, R. W.; Zang, S. Q.; Mak, T. C. W. Atomically precise site-specific tailoring and directional assembly of superatomic silver nanoclusters. J. Am. Chem. Soc.2018, 140, 1069–1076.

    CAS  Google Scholar 

  14. Kim, K.; Hirata, K.; Nakamura, K.; Kitazawa, H.; Hayashi, S.; Koyasu, K.; Tsukuda, T. Elucidating the do** effect on the electronic structure of thiolate-protected silver superatoms by photoelectron spectroscopy. Angew. Chem., Int. Ed.2019, 58, 11637–11641.

    CAS  Google Scholar 

  15. Liu, C.; Li, T.; Abroshan, H.; Li, Z. M.; Zhang, C.; Kim, H. J.; Li, G.; **, R. C. Chiral Ag23 nanocluster with open shell electronic structure and helical face-centered cubic framework. Nat. Commun.2018, 9, 744.

    Google Scholar 

  16. AbdulHalim, L. G.; Bootharaju, M. S.; Tang, Q.; Del Gobbo, S.; AbdulHalim, R. G.; Eddaoudi, M.; Jiang, D. E.; Bakr, O. M. Ag29(BDT)12(TPP)4: A tetravalent nanocluster. J. Am. Chem. Soc.2015, 137, 11970–11975.

    CAS  Google Scholar 

  17. Wang, Z.; Su, H. F.; Tan, Y. Z.; Schein, S.; Lin, S. C.; Liu, W.; Wang, S. A.; Wang, W. G.; Tung, C. H.; Sun, D. et al. Assembly of silver trigons into a buckyball-like Ag180 nanocage. Proc. Natl. Acad. Sci. USA2017, 114, 12132–12137.

    CAS  Google Scholar 

  18. Petty, J. T.; Sergev, O. O.; Ganguly, M.; Rankine, I. J.; Chevrier, D. M.; Zhang, P. A segregated, partially oxidized, and compact Ag10 cluster within an encapsulating DNA host. J. Am. Chem. Soc.2016, 138, 3469–3477.

    CAS  Google Scholar 

  19. Kurashige, W.; Niihori, Y.; Sharma, S.; Negishi, Y. Precise synthesis, functionalization and application of thiolate-protected gold clusters. Coord. Chem. Rev.2016, 320–321, 238–250.

    Google Scholar 

  20. Hossain, S.; Niihori, Y.; Nair, L. V.; Kumar, B.; Kurashige, W.; Negishi, Y. Alloy clusters: Precise synthesis and mixing effects. Acc. Chem. Res.2018, 51, 3114–3124.

    CAS  Google Scholar 

  21. Li, S.; Du, X. S.; Li, B.; Wang, J. Y.; Li, G. P.; Gao, G. G.; Zang, S. Q. Atom-precise modification of silver(I) thiolate cluster by shell ligand substitution: A new approach to generation of cluster functionality and chirality. J. Am. Chem. Soc.2018, 140, 594–597.

    CAS  Google Scholar 

  22. Gan, Z. B.; Lin, Y. J.; Luo, L.; Han, G. M.; Liu, W.; Liu, Z. J.; Yao, C. H.; Weng, L. H.; Liao, L. W.; Chen, J. S. et al. Fluorescent gold nanoclusters with interlocked staples and a fully thiolate-bound kernel. Angew. Chem., Int. Ed.2016, 55, 11567–11571.

    CAS  Google Scholar 

  23. Yan, N.; **a, N.; Liao, L. W.; Zhu, M.; **, F. M.; **, R. C.; Wu, Z. K. Unraveling the long-pursued Au144 structure by X-ray crystallography. Sci. Adv.2018, 4, eaat7259.

    CAS  Google Scholar 

  24. Yuan, S. F.; Xu, C. Q.; Li, J.; Wang, Q. M. A ligand-protected golden fullerene: The dipyridylamido Au328+ nanocluster. Angew. Chem., Int. Ed.2019, 58, 5906–5909.

    CAS  Google Scholar 

  25. Wang, S. X.; Abroshan, H.; Liu, C.; Luo, T. Y.; Zhu, M. Z.; Kim, H. J.; Rosi, N. L.; **, R. C. Shuttling single metal atom into and out of a metal nanoparticle. Nat. Commun.2017, 8, 848.

    Google Scholar 

  26. Wang, T. Y.; Wang, D. C.; Padelford, J. W.; Jiang, J.; Wang, G. L. Near-infrared electrogenerated chemiluminescence from aqueous soluble lipoic acid Au nanoclusters. J. Am. Chem. Soc.2016, 138, 6380–6383.

    CAS  Google Scholar 

  27. Chakraborty, P.; Nag, A.; Paramasivam, G.; Natarajan, G.; Pradeep, T. Fullerene-functionalized monolayer-protected silver clusters: [Ag29(BDT)12(C60)n]3− (n = 1−9). ACS Nano2018, 12, 2415–2425.

    CAS  Google Scholar 

  28. Dolamic, I.; Varnholt, B.; Bürgi, T. Chirality transfer from gold nanocluster to adsorbate evidenced by vibrational circular dichroism. Nat. Commun.2015, 6, 7117.

    CAS  Google Scholar 

  29. Sugiuchi, M.; Maeba, J.; Okubo, N.; Iwamura, M.; Nozaki, K.; Konishi, K. Aggregation-induced fluorescence-to-phosphorescence switching of molecular gold clusters. J. Am. Chem. Soc.2017, 139, 17731–17734.

    CAS  Google Scholar 

  30. Yan, J. Z.; Teo, B. K.; Zheng, N. F. Surface chemistry of atomically precise coinage-metal nanoclusters: From structural control to surface reactivity and catalysis. Acc. Chem. Res.2018, 51, 3084–3093.

    CAS  Google Scholar 

  31. Duchesne, P. N.; Li, Z. Y.; Deming, C. P.; Fung, V.; Zhao, X. J.; Yuan, J.; Regier, T.; Aldalbahi, A.; Almarhoon, Z.; Chen, S. W. et al. Golden single-atomic-site platinum electrocatalysts. Nat. Mater.2018, 17, 1033–1039.

    CAS  Google Scholar 

  32. Cai, X.; Saranya, G.; Shen, K. Q.; Chen, M. Y.; Si, R.; Ding, W. P.; Zhu, Y. Reversible switching of catalytic activity by shuttling an atom into and out of gold nanoclusters. Angew. Chem., Int. Ed.2019, 58, 9964–9968.

    CAS  Google Scholar 

  33. Chen, Y. S.; Kamat, P. V. Glutathione-capped gold nanoclusters as photosensitizers. Visible light-induced hydrogen generation in neutral water. J. Am. Chem. Soc.2014, 136, 6075–6082.

    CAS  Google Scholar 

  34. Zhang, H.; Liu, H.; Tian, Z. Q.; Lu, D.; Yu, Y.; Cestellos-Blanco, S.; Sakimoto, K. K.; Yang, P. D. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nat. Nanotechnol.2018, 13, 900–905.

    CAS  Google Scholar 

  35. Kwak, K.; Choi, W.; Tang, Q.; Kim, M.; Lee, Y.; Jiang, D. E.; Lee, D. A molecule-like PtAu24(SC6H13)18 nanocluster as an electrocatalyst for hydrogen production. Nat. Commun.2017, 8, 14723.

    Google Scholar 

  36. Li, J. G.; Zhao, T. T.; Chen, T. K.; Liu, Y. B.; Ong, C. N.; **e, J. P. Engineering noble metal nanomaterials for environmental applications. Nanoscale2015, 7, 7502–7519.

    CAS  Google Scholar 

  37. Yahia-Ammar, A.; Sierra, D.; Mérola, F.; Hildebrandt, N.; Le Guével, X. Self-assembled gold nanoclusters for bright fluorescence imaging and enhanced drug delivery. ACS Nano2016, 10, 2591–2599.

    CAS  Google Scholar 

  38. Chen, Y.; Montana, D. M.; Wei, H.; Cordero, J. M.; Schneider, M.; Le Guével, X.; Chen, O.; Bruns, O. T.; Bawendi, M. G. Shortwave infrared in vivo imaging with gold nanoclusters. Nano Lett.2017, 17, 6330–6334.

    CAS  Google Scholar 

  39. Du, B. J.; Jiang, X. Y.; Das, A.; Zhou, Q. H.; Yu, M. X.; **, R. C.; Zheng, J. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat. Nanotechnol.2017, 12, 1096–1102.

    CAS  Google Scholar 

  40. Yuan, X.; Setyawati, M. I.; Leong, D. T.; **e, J. P. Ultrasmall Ag+-rich nanoclusters as highly efficient nanoreservoirs for bacterial killing. Nano Res.2014, 7, 301–307.

    CAS  Google Scholar 

  41. Yuan, X.; Setyawati, M. I.; Tan, A. S.; Ong, C. N.; Leong, D. T.; **e, J. P. Highly luminescent silver nanoclusters with tunable emissions: Cyclic reduction-decomposition synthesis and antimicrobial properties. NPG Asia Mater.2013, 5, e39.

    CAS  Google Scholar 

  42. Zheng, K. Y.; Setyawati, M. I.; Leong, D. T.; **e, J. P. Surface ligand chemistry of gold nanoclusters determines their antimicrobial ability. Chem. Mater.2018, 30, 2800–2808.

    CAS  Google Scholar 

  43. Zheng, K. Y.; Setyawati, M. I.; Lim, T. P.; Leong, D. T.; **e, J. P. Antimicrobial cluster bombs: Silver nanoclusters packed with daptomycin. ACS Nano2016, 10, 7934–7942.

    CAS  Google Scholar 

  44. Chakraborty, I.; Udayabhaskararao, T.; Deepesh, G. K.; Pradeep, T. Sunlight mediated synthesis and antibacterial properties of monolayer protected silver clusters. J. Mater. Chem. B2013, 1, 4059–4064.

    CAS  Google Scholar 

  45. **, J. C.; Wu, X. J.; Xu, J.; Wang, B. B.; Jiang, F. L.; Liu, Y. Ultrasmall silver nanoclusters: Highly efficient antibacterial activity and their mechanisms. Biomater. Sci.2017, 5, 247–257.

    CAS  Google Scholar 

  46. Tao, Y.; Li, M. Q.; Ren, J. S.; Qu, X. G. Metal nanoclusters: Novel probes for diagnostic and therapeutic applications. Chem. Soc. Rev.2015, 44, 8636–8663.

    CAS  Google Scholar 

  47. Luo, Z. T.; Zheng, K. Y.; **e, J. P. Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications. Chem. Commun.2014, 50, 5143–5155.

    CAS  Google Scholar 

  48. Mao, X. Y.; Cheng, R. Y.; Zhang, H. B.; Bae, J.; Cheng, L. Y.; Zhang, L.; Deng, L. F.; Cui, W. G.; Zhang, Y. G.; Santos, H. A. et al. Self-healing and injectable hydrogel for matching skin flap regeneration. Adv. Sci.2019, 6, 1801555.

    Google Scholar 

  49. Tang, S. H.; Zheng, J. Antibacterial activity of silver nanoparticles: Structural effects. Adv. Healthc. Mater.2018, 7, 1701503.

    Google Scholar 

  50. Yuan, X.; Tay, Y.; Dou, X. Y.; Luo, Z. T.; Leong, D. T.; **e, J. P. Glutathione-protected silver nanoclusters as cysteine-selective fluorometric and colorimetric probe. Anal. Chem.2013, 85, 1913–1919.

    CAS  Google Scholar 

  51. **, R. C.; Cao, Y. W.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Photoinduced conversion of silver nanospheres to nanoprisms. Science2001, 294, 1901–1903.

    CAS  Google Scholar 

  52. Liu, Y. D.; Goebl, J.; Yin, Y. D. Templated synthesis of nanostructured materials. Chem. Soc. Rev.2013, 42, 2610–2653.

    CAS  Google Scholar 

  53. Wiley, B.; Sun, Y. G.; Mayers, B.; **a, Y. N. Shape-controlled synthesis of metal nanostructures: The case of silver. Chem.-Eur. J.2005, 11, 454–463.

    CAS  Google Scholar 

  54. Demers, L. M.; Östblom, M.; Zhang, H.; Jang, N. H.; Liedberg, B.; Mirkin, C. A. Thermal desorption behavior and binding properties of DNA bases and nucleosides on gold. J. Am. Chem. Soc.2002, 124, 11248–11249.

    CAS  Google Scholar 

  55. Yuan, X. H.; Luo, K.; Zhang, K. Q.; He, J. L.; Zhao, Y. C.; Yu, D. L. Combinatorial vibration-mode assignment for the FTIR spectrum of crystalline melamine: A strategic approach toward theoretical IR vibrational calculations of triazine-based compounds. J. Phys. Chem. A2016, 120, 7427–7433.

    CAS  Google Scholar 

  56. Goswami, N.; Luo, Z. T.; Yuan, X.; Leong, D. T.; **e, J. P. Engineering gold-based radiosensitizers for cancer radiotherapy. Mater. Horiz.2017, 4, 817–831.

    CAS  Google Scholar 

  57. Yao, Q. F.; Chen, T. K.; Yuan, X.; **e, J. P. Toward total synthesis of thiolate-protected metal nanoclusters. Acc. Chem. Res.2018, 51, 1338–1348.

    CAS  Google Scholar 

  58. Ding, X. G.; Peng, F.; Zhou, J.; Gong, W. B.; Slaven, G.; Loh, K. P.; Lim, C. T.; Leong, D. T. Defect engineered bioactive transition metals dichalcogenides quantum dots. Nat. Commun.2019, 10, 41.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Taishan Scholar Foundation (No. tsqn201812074), the Young Talents Joint Fund of Shandong Province (No. ZR2019YQ07), the Original Innovation Project of Qingdao City (No. 18-2-2-58-jch), the Open Fund of Shandong Key Laboratory of Biochemical Analysis (No. QUSTHX201901), and the Ministry of Education, Singapore, Academic Research Grant R-279-000-538-114.

Author information

Authors and Affiliations

Corresponding authors

Correspondence to Xun Yuan, Qiaofeng Yao or Jian** **%20Wang%20et%20al&contentID=10.1007%2Fs12274-019-2598-y&copyright=Tsinghua%20University%20Press%20and%20Springer-Verlag%20GmbH%20Germany%2C%20part%20of%20Springer%20Nature&publication=1998-0124&publicationDate=2020-01-02&publisherName=SpringerNature&orderBeanReset=true">Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Fang, Y., Zhou, X. et al. Embedding ultrasmall Ag nanoclusters in Luria-Bertani extract via light irradiation for enhanced antibacterial activity. Nano Res. 13, 203–208 (2020). https://doi.org/10.1007/s12274-019-2598-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2598-y

Keywords

Navigation