Log in

Regulating lithium nucleation and growth by zinc modified current collectors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium metal is commonly regarded as the “Holy Grail” anode material for high energy density rechargeable batteries. However, the uncontrollable growth of Li dendrites has posed safety concerns and thus greatly hindered its large-scale application. Here we have modified the surface of a commercial anode current collector, Cu foil, with a thin layer of Zn by a facile electroplating method, in order to regulate the Li nucleation and the following growth processes. Because of the formation of a solid solution buffer layer and Li-Zn alloy phases, the Li nucleation overpotential was dramatically reduced, realizing a uniform Li nucleation and a smooth Li plating morphology. As a result, significantly improved long-term cycling performance with a high Coulombic efficiency was achieved by the lithiophilic Zn coated Cu foil as a current collector. Full cells of Li–LiFePO4 and Li–S using the Li deposited on the Zn modified Cu as the anode, showed increased capacity with low voltage hysteresis and greatly enhanced cycling stability, ascribed to the uniform Li deposition and formation of a stable SEI layer. This work demonstrates the feasibility of employing lithiophilic modified Cu foils as Li metal current collectors for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armand, M.; Tarascon, J. M. Building better batteries. Nature2008, 451, 652–657.

    CAS  Google Scholar 

  2. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature2001, 414, 359–367.

    CAS  Google Scholar 

  3. Lu, Y.; Yu, L.; Lou, X. W. Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem2018, 4, 972–996.

    CAS  Google Scholar 

  4. Xu, W.; Wang, J. L.; Ding, F.; Chen, X. L.; Nasybulin, E.; Zhang, Y. H.; Zhang, J. G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537.

    CAS  Google Scholar 

  5. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

    CAS  Google Scholar 

  6. Yu, S. H.; Feng, X. R.; Zhang, N.; Seok, J.; Abruña, H. D. Understanding conversion-type electrodes for lithium rechargeable batteries. Acc. Chem. Res. 2018, 51, 273–281.

    CAS  Google Scholar 

  7. Zhang, N.; Levin, B. D. A.; Yang, Y.; Muller, D. A.; Abruña, H. D. Porous Fe3O4 nanospheres as effective sulfur hosts for Li–S batteries. J. Electrochem. Soc. 2018, 165, A1656–A1661.

    CAS  Google Scholar 

  8. Zhang, N.; Yang, Y.; Feng, X. R.; Yu, S. H.; Seok, J.; Muller, D. A.; Abruña, H. D. Sulfur encapsulation by MOF-derived CoS2 embedded in carbon hosts for high-performance Li–S batteries. J. Mater. Chem. A2019, 7, 21128–21139.

    CAS  Google Scholar 

  9. Zhang, J. T.; Li, Z.; Chen, Y.; Gao, S. Y.; Lou, X. W. D. Nickel-iron layered double hydroxide hollow polyhedrons as a superior sulfur host for lithium-sulfur batteries. Angew. Chem., Int. Ed.2018, 57, 10944–10948.

    CAS  Google Scholar 

  10. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

    CAS  Google Scholar 

  11. Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

    CAS  Google Scholar 

  12. Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 1979, 126, 2047–2051.

    CAS  Google Scholar 

  13. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 2016, 3, 1500213.

    Google Scholar 

  14. Liu, J.; Bao, Z. A.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q. Y.; Liaw, B. Y.; Liu, P.; Manthiram, A. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy2019, 4, 180–186.

    CAS  Google Scholar 

  15. Cohen, Y. S.; Cohen, Y.; Aurbach, D. Micromorphological studies of lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy. J. Phys. Chem. B2000, 104, 12282–12291.

    CAS  Google Scholar 

  16. Yan, K.; Lu, Z. D.; Lee, H. W.; **ong, F.; Hsu, P. C.; Li, Y. Z.; Zhao, J.; Chu, S.; Cui, Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy2016, 1, 16010.

    CAS  Google Scholar 

  17. Steiger, J.; Kramer, D.; Mönig, R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. J. Power Sources2014, 261, 112–119.

    CAS  Google Scholar 

  18. Chen, K. H.; Wood, K. N.; Kazyak, E.; LePage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta, N. P. Dead lithium: Mass transport effects on voltage, capacity, and failure of lithium metal anodes. J. Mater. Chem. A2017, 5, 11671–11681.

    CAS  Google Scholar 

  19. Lv, S. S.; Verhallen, T.; Vasileiadis, A.; Ooms, F.; Xu, Y. L.; Li, Z. L.; Li, Z. C.; Wagemaker, M. Operando monitoring the lithium spatial distribution of lithium metal anodes. Nat. Commun. 2018, 9, 2152.

    Google Scholar 

  20. Aurbach, D.; Gofer, Y.; Langzam, J. The correlation between surface chemistry, surface morphology, and cycling efficiency of lithium electrodes in a few polar aprotic systems. J. Electrochem. Soc. 1989, 136, 3198–3205.

    CAS  Google Scholar 

  21. Lu, Q. W.; He, Y. B.; Yu, Q. P.; Li, B. H.; Kaneti, Y. V.; Yao, Y. W.; Kang, F. Y.; Yang, Q. H. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv. Mater. 2017, 29, 1604460.

    Google Scholar 

  22. Cheng, X. B.; Yan, C.; Peng, H. J.; Huang, J. Q.; Yang, S. T.; Zhang, Q. Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free Li metal anodes. Energy Storage Mater. 2018, 10, 199–205.

    Google Scholar 

  23. Zheng, Q.; Ma, L.; Khurana, R.; Archer, L. A.; Coates, G. W. Structure-property study of cross-linked hydrocarbon/poly(ethylene oxide) electrolytes with superior conductivity and dendrite resistance. Chem. Sci. 2016, 7, 6832–6838.

    CAS  Google Scholar 

  24. Zheng, Q.; Pesko, D. M.; Savoie, B. M.; Timachova, K.; Hasan, A. L.; Smith, M. C.; Miller III, T. F.; Coates, G. W.; Balsara, N. P. Optimizing ion transport in polyether-based electrolytes for lithium batteries. Macromolecules2018, 51, 2847–2858.

    CAS  Google Scholar 

  25. Li, J. C.; Ma, C.; Chi, M. F.; Liang, C. D.; Dudney, N. J. Solid electrolyte: The key for high-voltage lithium batteries. Adv. Energy Mater. 2015, 5, 1401408.

    Google Scholar 

  26. Croce, F.; Persi, L.; Ronci, F.; Scrosati, B. Nanocomposite polymer electrolytes and their impact on the lithium battery technology. Solid State Ionics2000, 135, 47–52.

    CAS  Google Scholar 

  27. Kim, K. H.; Iriyama, Y.; Yamamoto, K.; Kumazaki, S.; Asaka, T.; Tanabe, K.; Fisher, C. A. J.; Hirayama, T.; Murugan, R.; Ogumi, Z. Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery. J. Power Sources2011, 196, 764–767.

    CAS  Google Scholar 

  28. Miao, R. R.; Yang, J.; Xu, Z. X.; Wang, J. L.; Nuli, Y.; Sun, L. M. A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries. Sci. Rep. 2016, 6, 21771.

    CAS  Google Scholar 

  29. Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X. L.; Shao, Y. Y.; Engelhard, M. H.; Nie, Z. M.; **ao, J. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 2013, 135, 4450–4456.

    CAS  Google Scholar 

  30. Li, W. Y.; Yao, H. B.; Yan, K.; Zheng, G. Y.; Liang, Z.; Chiang, Y. M.; Cui, Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 2015, 6, 7436.

    Google Scholar 

  31. Liu, Y. Y.; Lin, D. C.; Li, Y. Z.; Chen, G. X.; Pei, A.; Nix, O.; Li, Y. B.; Cui, Y. Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. Nat. Commun. 2018, 9, 3656.

    Google Scholar 

  32. Mogi, R.; Inaba, M.; Jeong, S. K.; Iriyama, Y.; Abe, T.; Ogumi, Z. Effects of some organic additives on lithium deposition in propylene carbonate. J. Electrochem. Soc. 2002, 149, A1578–A1583.

    CAS  Google Scholar 

  33. Yun, Q. B.; He, Y. B.; Lv, W.; Zhao, Y.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater. 2016, 28, 6932–6939.

    CAS  Google Scholar 

  34. Lu, L. L.; Ge, J.; Yang, J. N.; Chen, S. M.; Yao, H. B.; Zhou, F.; Yu, S. H. Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Lett. 2016, 16, 4431–4437.

    CAS  Google Scholar 

  35. Zhang, Y.; Luo, W.; Wang, C. W.; Li, Y. J.; Chen, C. J.; Song, J. W.; Dai, J. Q.; Hitz, E. M.; Xu, S. M.; Yang, C. P. et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proc. Natl. Acad. Sci. USA2017, 114, 3584–3589.

    CAS  Google Scholar 

  36. Ji, X. L.; Liu, D. Y.; Prendiville, D. G.; Zhang, Y. C.; Liu, X. N.; Stucky, G. D. Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition. Nano Today2012, 7, 10–20.

    CAS  Google Scholar 

  37. Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 8058.

    CAS  Google Scholar 

  38. Chen, M.; Zheng, J. H.; Sheng, O. W.; **, C. B.; Yuan, H. D.; Liu, T. F.; Liu, Y. J.; Wang, Y.; Nai, J. W.; Tao, X. Y. Sulfur–nitrogen co-doped porous carbon nanosheets to control lithium growth for a stable lithium metal anode. J. Mater. Chem. A2019, 7, 18267–18274.

    CAS  Google Scholar 

  39. Tang, L. S.; Zhang, R.; Zhang, X. Y.; Zhao, N. Q.; Shi, C. S.; Liu, E. Z.; Ma, L. Y.; Luo, J. Y.; He, C. N. ZnO nanoconfined 3D porous carbon composite microspheres to stabilize lithium nucleation/growth for high-performance lithium metal anodes. J. Mater. Chem. A2019, 7, 19442–19452.

    CAS  Google Scholar 

  40. Cha, E.; Patel, M. D.; Park, J.; Hwang, J.; Prasad, V.; Cho, K.; Choi, W; 2 D M o S 2 as an efficient protective layer for lithium metal anodes in high-performance Li–S batteries. Nat. Nanotechnol. 2018, 13, 337–344.

    CAS  Google Scholar 

  41. Yan, K.; Lee, H. W.; Gao, T.; Zheng, G. Y.; Yao, H. B.; Wang, H. T.; Lu, Z. D.; Zhou, Y.; Liang, Z.; Liu, Z. F. et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 2014, 14, 6016–6022.

    CAS  Google Scholar 

  42. **e, J.; Liao, L.; Gong, Y. J.; Li, Y. B.; Shi, F. F.; Pei, A.; Sun, J.; Zhang, R. F.; Kong, B.; Subbaraman, R. et al. Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode. Sci. Adv. 2017, 3, eaao3170.

    Google Scholar 

  43. Liu, Y. Y.; Lin, D. C.; Liang, Z.; Zhao, J.; Yan, K.; Cui, Y. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 2016, 7, 10992.

    CAS  Google Scholar 

  44. Luo, J.; Fang, C. C.; Wu, N. L. High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes. Adv. Energy Mater. 2018, 8, 1701482.

    Google Scholar 

  45. Zhang, C.; Lv, W.; Zhou, G. M.; Huang, Z. J.; Zhang, Y. B.; Lyu, R.; Wu, H. L.; Yun, Q. B.; Kang, F. Y.; Yang, Q. H. Vertically aligned lithiophilic CuO nanosheets on a Cu collector to stabilize lithium deposition for lithium metal batteries. Adv. Energy Mater. 2018, 8, 1703404.

    Google Scholar 

  46. Zhang, N.; Yu, S. H.; Abruña, H. D. Uniform lithium deposition on N-doped carbon-coated current collectors. Chem. Commun. 2019, 55, 10124–10127.

    CAS  Google Scholar 

  47. Burns, J. C.; Kassam, A.; Sinha, N. N.; Downie, L. E.; Solnickova, L.; Way, B. M.; Dahn, J. R. Predicting and extending the lifetime of Li-ion batteries. J. Electrochem. Soc. 2013, 160, A1451–A1456.

    CAS  Google Scholar 

  48. Adams, B. D.; Zheng, J. M.; Ren, X. D.; Xu, W.; Zhang, J. G. Accurate determination of Coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 2018, 8, 1702097.

    Google Scholar 

  49. Wood, K. N.; Kazyak, E.; Chadwick, A. F.; Chen, K. H.; Zhang, J. G.; Thornton, K.; Dasgupta, N. P. Dendrites and pits: Untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Cent. Sci. 2016, 2, 790–801.

    CAS  Google Scholar 

  50. Wang, X.; Zeng, W.; Hong, L.; Xu, W. W.; Yang, H. K.; Wang, F.; Duan, H. G.; Tang, M.; Jiang, H. Q. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nat. Energy2018, 3, 227–235.

    CAS  Google Scholar 

  51. Liu, W.; Li, W. Y.; Zhuo, D.; Zheng, G. Y.; Lu, Z. D.; Liu, K.; Cui, Y. Core-shell nanoparticle coating as an interfacial layer for dendrite-free lithium metal anodes. ACS Cent. Sci. 2017, 3, 135–140.

    CAS  Google Scholar 

  52. Zhang, X. Q.; Cheng, X. B.; Chen, X.; Yan, C.; Zhang, Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 2017, 27, 1605989.

    Google Scholar 

  53. Mueller, F.; Geiger, D.; Kaiser, U.; Passerini, S.; Bresser, D. Elucidating the impact of cobalt do** on the lithium storage mechanism in conversion/alloying-type zinc oxide anodes. ChemElectroChem2016, 3, 1311–1319.

    CAS  Google Scholar 

  54. Varzi, A.; Mattarozzi, L.; Cattarin, S.; Guerriero, P.; Passerini, S. 3D porous Cu-Zn alloys as alternative anode materials for Li-Ion batteries with superior low t performance. Adv. Energy Mater. 2018, 8, 1701706.

    Google Scholar 

  55. **, C. B.; Sheng, O. W.; Luo, J. M.; Yuan, H. D.; Fang, C.; Zhang, W. K.; Huang, H.; Gan, Y. P.; **a, Y.; Liang, C. et al. 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries. Nano Energy2017, 37, 177–186.

    CAS  Google Scholar 

  56. Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X. B.; Zhang, X. Q.; Yan, C.; Zhang, Q. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem., Int. Ed.2017, 56, 7764–7768.

    CAS  Google Scholar 

  57. Okamoto, H. Li-Zn (lithium-Zinc). J. Phase Equilib. Diff.2012, 33, 345–345.

    CAS  Google Scholar 

Download references

Acknowledgements

This work made use of the Cornell Center for Materials Research (CCMR) Shared Facilities with funding from the NSF MRSEC program [DMR-1719875].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seung-Ho Yu or Héctor D. Abruña.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Yu, SH. & Abruña, H.D. Regulating lithium nucleation and growth by zinc modified current collectors. Nano Res. 13, 45–51 (2020). https://doi.org/10.1007/s12274-019-2567-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2567-7

Keywords

Navigation