Log in

Novel fibronectin-targeted nanodisk drug delivery system displayed superior efficacy against prostate cancer compared with nanospheres

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

An Erratum to this article was published on 16 January 2020

This article has been updated

Abstract

Currently, prostate cancer is the most frequently diagnosed cancer in males and chemotherapy is often essential for treating advanced prostate cancer. However, common chemotherapies for prostate cancer suffer from serious adverse effects due to poor drug targeting ability and tissue penetration, even with the help of conventional drug delivery systems. Here, encouraged by recent studies showing possible drug retention and tissue penetration advantages of unconventional non-spherical nanoparticles over conventional spherical nanoparticles, we design and construct a novel non-spherical nanodisk drug delivery system for treating prostate cancer. In order to enhance tumor-targeting capability, these nanodisks are further modified with targeting peptide CR(NMe)EKA, which recognizes extracellular matrix fibronectin and its complexes specifically expressed on the walls of tumor vessels and in tumor stroma. Compared with conventional nanospheres, the nanodisks achieve much higher drug accumulation at prostate tumor sites. When loaded with paclitaxel, the CR(NMe)EKA-modified nanodisks display superior antitumor efficacy to free paclitaxel, unmodified nanodisks and nanospheres. In summary, our study provides an attractive therapeutic strategy for targeted therapy against prostate cancer with simple preparation, high efficiency and low toxicity, and supplements a theoretical support for treatments realized by different shaped nanoplatforms. Our study also offers valuable data for understanding biological effects of non-spherical nanodisks and highlights the great potential of unconventional nanoparticles in biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 16 January 2020

    The description of nanodisk and nanosphere for their composing proportion in page 2, Section 2.2 of the original version of this article was unfortunately reversed.

References

  1. Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin.2019, 69, 7–34.

    Article  Google Scholar 

  2. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin.2018, 68, 394–424.

    Google Scholar 

  3. Macintosh, C. A.; Stower, M.; Reid, N.; Maitland, N. J. Precise microdissection of human prostate cancers reveals genotypic heterogeneity. Cancer Res.1998, 58, 23–28.

    CAS  Google Scholar 

  4. Ruijter, E. T.; Van De Kaa, C. A.; Schalken, J. A.; Debruyne, F. M.; Ruiter, D. J. Histological grade heterogeneity in multifocal prostate cancer. Biological and clinical implications. J. Pathol.1996, 180, 295–299.

    CAS  Google Scholar 

  5. Miller, G. J.; Cygan, J. M. Morphology of prostate cancer: The effects of multifocality on histological grade, tumor volume and capsule penetration. J. Urol.1994, 752, 1709–1713.

    Google Scholar 

  6. Yang, H. W.; Hua, M. Y.; Liu, H. L.; Tsai, R. Y.; Chuang, C. K.; Chu, P. C.; Wu, P. Y.; Chang, Y. H.; Chuang, H. C.; Yu, K. J. et al. Cooperative dual-activity targeted nanomedicine for specific and effective prostate cancer therapy. ACSNano2012, 6, 1795–1805.

    CAS  Google Scholar 

  7. Widmark, A.; Klepp, O.; Solberg, A.; Damber, J. E.; Angelsen, A.; Fransson, P.; Lund, J. A.; Tasdemir, I.; Hoyer, M.; Wiklund, F. et al. Endocrine treatment, with or without radiotherapy, in locally advanced prostate cancer (SPCG-7/SFUO-3): An open randomised phase III trial. Lancet2009, 373, 301–308.

    CAS  Google Scholar 

  8. Isshiki, S.; Akakura, K.; Komiya, A.; Suzuki, H.; Kamiya, N.; Ito, H. Chromogranin a concentration as a serum marker to predict prognosis after endocrine therapy for prostate cancer. J. Urol.2002, 767, 512–515.

    Google Scholar 

  9. Tannock, I. R.; de Wit, R.; Berry, W. R.; Horti, J.; Pluzanska, A.; Chi, K. N.; Oudard, S.; Theodore, C.; James, N. D.; Turesson, I. et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med.2004, 351, 1502–1512.

    CAS  Google Scholar 

  10. Nehoff, H.; Parayath, N. N.; Domanovitch, L.; Taurin, S.; Greish, K. Nanomedicine for drug targeting: Strategies beyond the enhanced permeability and retention effect. Int. J. Nanomedicine2014, 9, 2539–2555.

    Google Scholar 

  11. Chauhan, V. P.; Popovic, Z.; Chen, O.; Cui, J.; Fukumura, D.; Bawendi, M. G.; Jain, R. K. Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew. Chem., Int. Ed.2011, 50, 11417–11420.

    CAS  Google Scholar 

  12. Park, J. H.; von Maltzahn, G.; Zhang, L. L.; Derfus, A. M.; Simberg, D.; Harris, T. J.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. Systematic surface engineering of magnetic nanoworms for in vivo tumor targeting. Small2009, 5, 694–700.

    CAS  Google Scholar 

  13. Pluen, A.; Boucher, Y.; Ramanujan, S.; McKee, T. D.; Gohongi, T.; di Tomaso, E.; Brown, E. B.; Izumi, Y.; Campbell, R. B.; Berk, D. A. et al. Role of tumor-host interactions in interstitial diffusion of macromolecules: Cranial vs. subcutaneous tumors. Proc. Natl. Acad. Sci. USA2001, 98, 4628–4633.

    CAS  Google Scholar 

  14. Klibanov, A. L.; Maruyama, K.; Torchilin, V. P.; Huang, L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEES Lett.1990, 268, 235–237.

    CAS  Google Scholar 

  15. Liu, Z.; Cai, W.; He, L.; Nakayama, N.; Chen, K.; Sun, X. M.; Chen, X. Y.; Dai, H. J. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol.2007, 2, 47–52.

    CAS  Google Scholar 

  16. Geng, Y.; Dalhaimer, P.; Cai, S. S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D. E. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol.2007, 2, 249–255.

    CAS  Google Scholar 

  17. Gao, J.; **e, C.; Zhang, M. F.; Wei, X. L.; Yan, Z. Q.; Ren, Y. C.; Ying, M.; Lu, W. Y. RGD-modified lipid disks as drug carriers for tumor targeted drug delivery. Nanoscale2016, 8, 7209–7216.

    CAS  Google Scholar 

  18. Zhang, W. P.; Sun, J.; Liu, Y.; Tao, M. Y.; Ai, X. Y.; Su, X. N.; Cai, C. R.; Tang, Y. L.; Feng, Z.; Yan, X. D. et al. PEG-stabilized bilayer nanodisks as carriers for doxorubicin delivery. Mol. Pharm.2014, 77, 3279–3290.

    Google Scholar 

  19. Yeh, C. Y.; Hsiao, J. K.; Wang, Y. P.; Lan, C. H.; Wu, H. C. Peptide-conjugated nanoparticles for targeted imaging and therapy of prostate cancer. Biomaterials2016, 99, 1–15.

    CAS  Google Scholar 

  20. Wang, L. Y.; Qu, M. K.; Huang, S. Q.; Fu, Y.; Yang, L. Q.; He, S. S.; Li, L.; Zhang, Z. R.; Lin, Q.; Zhang, L. A novel a-enolase-targeted drug delivery system for high efficacy prostate cancer therapy. Nanoscale2018, 10, 13673–13683.

    CAS  Google Scholar 

  21. Bae, Y. H.; Park, K. Targeted drug delivery to tumors: Myths, reality and possibility. J. Control. Release.2011, 153, 198–205.

    CAS  Google Scholar 

  22. Wong, K. M.; Horton, K. J.; Coveler, A. L.; Hingorani, S. R.; Harris, W. P. Targeting the tumor stroma: The biology and clinical development of pegylated recombinant human hyaluronidase (PEGPH20). Curr. Oncol. Rep.2017, 19, 47.

    Google Scholar 

  23. Agemy, L.; Sugahara, K. N.; Kotamraju, V. R.; Gujraty, K.; Girard, O. M.; Kono, Y.; Mattrey, R. F.; Park, J. H.; Sailor, M. J.; Jimenez, A. I. et al. Nanoparticle-induced vascular blockade in human prostate cancer. Blood2010, 776, 2847–2856.

    Google Scholar 

  24. Jiang, K. J.; Song, X.; Yang, L. Q.; Li, L.; Wan, Z. Y.; Sun, X.; Gong, T.; Lin, Q.; Zhang, Z. R. Enhanced antitumor and anti-metastasis efficacy against aggressive breast cancer with a fibronectin-targeting liposomal doxorubicin. J. Control. Release.2018, 277, 21–30.

    Google Scholar 

  25. Udagawa, T.; Wood, M. Tumor-stromal cell interactions and opportunities for therapeutic intervention. Curr. Opin. Pharmacol.2010, 10, 369–374.

    CAS  Google Scholar 

  26. Barbazan, J.; Alonso-Alconada, L.; Elkhatib, N.; Geraldo, S.; Gurchenkov, V.; Glentis, A.; van Niel, G.; Palmulli, R.; Fernandez, B.; Viaño, P. et al. Liver metastasis is facilitated by the adherence of circulating tumor cells to vascular fibronectin deposits. Cancer Res.2017, 77, 3431–3441.

    CAS  Google Scholar 

  27. Kaspar, M.; Zardi, L.; Neri, D. Fibronectin as target for tumor therapy. Int. J. Cancer2006, 778, 1331–1339.

    Google Scholar 

  28. Nam, J. M.; Onodera, Y.; Bissell, M. J.; Park, C. C. Breast cancer cells in three-dimensional culture display an enhanced radioresponse after coordinate targeting of integrin a5(31 and fibronectin. Cancer Res.2010, 70, 5238–5248.

    CAS  Google Scholar 

  29. Wang, C.; Wang, X.; Zhong, T.; Zhao, Y.; Zhang, W. Q.; Ren, W.; Huang, D.; Zhang, S.; Guo, Y.; Yao, X. et al. The antitumor activity of tumor-homing peptide-modified thermosensitive liposomes containing doxorubicin on MCF-7/ADR: In vitro and in vivo. Int. J. Nanomedicine2015, 10, 2229–2248.

    CAS  Google Scholar 

  30. Zhang, X. M.; Zhang, Q.; Peng, Q.; Zhou, J.; Liao, L. F.; Sun, X.; Zhang, L.; Gong, T. Hepatitis B virus preS1-derived lipopeptide functionalized liposomes for targeting of hepatic cells. Biomaterials2014, 35, 6130–6141.

    CAS  Google Scholar 

  31. Song, X.; Wan, Z. Y.; Chen, T. J.; Fu, Y.; Jiang, K. J.; Yi, X. L.; Ke, H.; Dong, J. X.; Yang, L. Q.; Li, L. et al. Development of a multi-target peptide for potentiating chemotherapy by modulating tumor microenvironment. Biomaterials2016, 108, 44–56.

    CAS  Google Scholar 

  32. Wang, H.; Wang, X. Y.; **e, C.; Zhang, M. R.; Ruan, H. T.; Wang, S. L.; Jiang, K.; Wang, F.; Zhan, C. Y.; Lu, W. Y. et al. Nanodisk-based gliomatargeted drug delivery enabled by a stable glycopeptide. J. Control. Release.2018, 284, 26–38.

    CAS  Google Scholar 

  33. Yang, Y.; Zhou, Z.; He, S.; Fan, T. T.; **, Y.; Zhu, X.; Chen, C. H.; Zhang, Z. R.; Huang, Y. Treatment of prostate carcinoma with (Galectin-3)-targeted HPMA copolymer-(G3-C12)-5-Fluorouracil conjugates. Biomaterials2012, 33, 2260–2271.

    CAS  Google Scholar 

  34. Xu, Z. H.; Wang, Y. H.; Zhang, L.; Huang, L. Nanoparticle-delivered transforming growth factor-p siRNA enhances vaccination against advanced melanoma by modifying tumor microenvironment. ACS Nana2014, 8, 3636–3645.

    CAS  Google Scholar 

  35. Li, N.; Li, N.; Yi, Q. Y.; Luo, K.; Guo, C. H.; Pan, D. Y.; Gu, Z. W. Amphiphilic peptide dendritic copolymer-doxorubicin nanoscale conjugate self-assembled to enzyme-responsive anti-cancer agent. Biomaterials2014, 35, 9529–9545.

    CAS  Google Scholar 

  36. Roberts, W. G.; Ung, E.; Whalen, P.; Cooper, B.; Hulford, C.; Autry, C.; Richter, D.; Emerson, E.; Lin, J.; Kath, J. et al. Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562, 271. Cancer Res.2008, 68, 1935–1944.

    CAS  Google Scholar 

  37. Wang, Z. H.; Yu, Y.; Dai, W. B.; Lu, J. K.; Cui, J. R.; Wu, H. N.; Yuan, L.; Zhang, H.; Wang, X. Q.; Wang, J. C. et al. The use of a tumor metastasis targeting peptide to deliver doxorubicin-containing liposomes to highly metastatic cancer. Biomaterials2012, 33, 8451–8460.

    CAS  Google Scholar 

  38. Miiller, R. H.; Mäder, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery — a review of the state of the art. Eur. J. Pharm. Biopharm.2000, 50, 161–177.

    Google Scholar 

  39. Johansson, E.; Sandström, M. C.; Bergstrom, M.; Edwards, K. On the formation of discoidal versus threadlike micelles in dilute aqueous surfactant/lipid systems. Langmuir2008, 24, 1731–1739.

    CAS  Google Scholar 

  40. Lammers, T.; Kiessling, F.; Hennink, W. E.; Storm, G. Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. J. Control. Release.2012, 161, 175–187.

    CAS  Google Scholar 

  41. Zhang, B.; Shen, S.; Liao, Z. W.; Shi, W.; Wang, Y.; Zhao, J. J.; Hu, Y.; Yang, J. R.; Chen, J.; Mei, H. et al. Targeting fibronectins of glioma extracellular matrix by CLT1 peptide-conjugated nanoparticles. Biomaterials2014, 35, 4088–4098.

    CAS  Google Scholar 

  42. Kibria, G.; Hatakeyama, H.; Ohga, N.; Hida, K.; Harashima, H. The effect of liposomal size on the targeted delivery of doxorubicin to Integrin avp3-expressing tumor endothelial cells. Biomaterials2013, 34, 5617–5627.

    CAS  Google Scholar 

  43. Ruan, S. B.; Zhang, L.; Chen, J. T.; Cao, T. W.; Yang, Y. T.; Liu, Y. Y.; He, Q.; Gao, F. T.; Gao, H. L. Targeting delivery and deep penetration using multistage nanoparticles for triple-negative breast cancer. RSC Adv.2015, 5, 64303–64317.

    CAS  Google Scholar 

  44. Kibria, G.; Hatakeyama, H.; Sato, Y.; Harashima, H. Anti-tumor effect via passive anti-angiogenesis of PEGylated liposomes encapsulating doxorubicin in drug resistant tumors. Int. J. Pharm.2016, 509, 178–187.

    CAS  Google Scholar 

  45. Deen, W. M.; Bohrer, M. P.; Epstein, N. B. Effects of molecular size and configuration on diffusion in microporous membranes. AIChE J.1981, 27, 952–959.

    CAS  Google Scholar 

  46. Pluen, A.; Netti, P. A.; Jain, R. K.; Berk, D. A. Diffusion of macromolecules in agarose gels: Comparison of linear and globular configurations. Biophys. J.1999, 77, 542–552.

    CAS  Google Scholar 

  47. Bourboulia, D.; Stetler-Stevenson, W. G Matrix metalloProteinases (MMPs) and tissue inhibitors of metalloProteinases (TIMPs): Positive and negative regulators intumor cell adhesion. Semin. Cancer Biol.2010, 20, 161–168.

    CAS  Google Scholar 

  48. Moroz, A.; Delella, F. K.; Lacorte, L. M.; Deffune, E.; Felisbino, S. L. Fibronectin induces MMP2 expression in human prostate cancer cells. Biochem. Biophys. Res. Commun.2013, 430, 1319–1321.

    CAS  Google Scholar 

  49. Urruticoechea, A.; Smith, I. E.; Dowsett, M. Proliferation marker Ki-67 in early breast cancer. J. Clin. Oncol.2005, 23, 7212–7220.

    CAS  Google Scholar 

  50. Joensuu, K.; Leidenius, M.; Kero, M.; Andersson, L. C.; Horwitz, K. B.; Heikkilä, P. ER, PR, HER2, Ki67 and CK5 in early and late relapsing breast cancer-reduced CK5 expression in metastases. Breast Cancer2013, 7, 23–34.

    Google Scholar 

  51. Gao, Y. J.; Zhou, Y. X.; Zhao, L.; Zhang, C.; Li, Y. S.; Li, J. W.; Li, X. R.; Liu, Y. Enhanced antitumor efficacy by cyclic RGDyK-conjugated and paclitaxel-loaded pH-responsive polymeric micelles. Acta Biomater.2015, 23, 127–135.

    CAS  Google Scholar 

  52. Li, W. H.; Yi, X. L.; Liu, X.; Zhang, Z. R.; Fu, Y.; Gong, T. Hyaluronic acid ion-pairing nanoparticles for targeted tumor therapy. J. Control. Release.2016, 225, 170–182.

    CAS  Google Scholar 

  53. Menna, P.; Salvatorelli, E.; Minotti, G. Cardiotoxicity of antitumor drugs. Chem. Res. Toxicol.2008, 21, 978–989.

    CAS  Google Scholar 

  54. Saad, S. Y.; Najjar, T. A. O.; Alashari, M. Cardiotoxicity of doxorubicin/paclitaxel combination in rats: Effect of sequence and timing of administration. J. Biochem. Mol. Toxicol.2004, 18, 78–86.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 81690261 and 81872824).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Zhang.

Electronic supplementary material

12274_2019_2488_MOESM1_ESM.pdf

Novel fibronectin-targeted nanodisk drug delivery system displayed superior efficacy against prostate cancer compared with nanospheres

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhou, B., Huang, S. et al. Novel fibronectin-targeted nanodisk drug delivery system displayed superior efficacy against prostate cancer compared with nanospheres. Nano Res. 12, 2451–2459 (2019). https://doi.org/10.1007/s12274-019-2488-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2488-3

Keywords

Navigation