Log in

Group 14 element-based non-centrosymmetric quantum spin Hall insulators with large bulk gap

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

To date, a number of two-dimensional (2D) topological insulators (TIs) have been realized in Group 14 elemental honeycomb lattices, but all are inversionsymmetric. Here, based on first-principles calculations, we predict a new family of 2D inversion-asymmetric TIs with sizeable bulk gaps from 105 meV to 284 meV, in X2–GeSn (X = H, F, Cl, Br, I) monolayers, making them in principle suitable for room-temperature applications. The nontrivial topological characteristics of inverted band orders are identified in pristine X2–GeSn with X = (F, Cl, Br, I), whereas H2–GeSn undergoes a nontrivial band inversion at 8% lattice expansion. Topologically protected edge states are identified in X2–GeSn with X = (F, Cl, Br, I), as well as in strained H2–GeSn. More importantly, the edges of these systems, which exhibit single-Dirac-cone characteristics located exactly in the middle of their bulk band gaps, are ideal for dissipationless transport. Thus, Group 14 elemental honeycomb lattices provide a fascinating playground for the manipulation of quantum states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moore, J. E. The birth of topological insulators. Nature 2013, 464, 194–198.

    Article  Google Scholar 

  2. Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067.

    Article  Google Scholar 

  3. Zhang, H. J.; Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442.

    Article  Google Scholar 

  4. Yan, B. H.; Jansen, M.; Felser, C. A large-energy-gap oxide topological insulator based on the superconductor BaBiO3. Nat. Phys. 2013, 9, 709–711.

    Article  Google Scholar 

  5. Kou, L. Z.; Wu, S. C.; Felser, C.; Frauenheim, T.; Chen, C. F.; Yan, B. H. Robust 2D topological insulators in van der Waals heterostructures. ACS Nano 2014, 8, 10448–10454.

    Article  Google Scholar 

  6. Ma, Y. D.; Dai, Y.; Guo, M.; Niu, C. W.; Huang, B. B. Intriguing behavior of halogenated two-dimensional tin. J. Phys. Chem. C 2012, 116, 12977–12981.

    Article  Google Scholar 

  7. Bernevig, B. A.; Hughes, T. L.; Zhang, S. C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 2006, 314, 1757–1761.

    Article  Google Scholar 

  8. König, M.; Wiedmann, S.; Brüne, C.; Roth, A.; Buhmann, H.; Molenkamp, L. W.; Qi, X. L.; Zhang, S. C. Quantum spin Hall insulator state in HgTe quantum wells. Science 2007, 318, 766–770.

    Article  Google Scholar 

  9. Chen, Y. L.; Analytis, J. G.; Chu, J. H.; Liu, Z. K.; Mo, S. K.; Qi, X. L.; Zhang, H. J.; Lu, D. H.; Dai, X.; Fang, Z. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 2009, 325, 178–181.

    Article  Google Scholar 

  10. **a, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 398–402.

    Article  Google Scholar 

  11. Knez, I.; Du, R. R.; Sullivan, G. Evidence for helical edge modes in inverted InAs/GaSb quantum wells. Phys. Rev. Lett. 2011, 107, 136603.

    Article  Google Scholar 

  12. Murakami, S. Quantum spin Hall effect and enhanced magnetic response by spin-orbit coupling. Phys. Rev. Lett. 2006, 97, 236805.

    Article  Google Scholar 

  13. Ma, Y. D.; Dai, Y.; Kou, L. Z.; Frauenheim, T.; Heine, T. Robust two-dimensional topological insulators in methylfunctionalized bismuth, antimony, and lead bilayer films. Nano Lett. 2005, 15, 1083–1089.

    Article  Google Scholar 

  14. Song, Z. G.; Liu, C. C.; Yang, J. B.; Han, J. Z.; Ye, M.; Fu, B. T.; Yang, Y. C.; Niu, Q.; Lu, J.; Yao, Y. G. Quantum spin Hall insulators and quantum valley Hall insulators of BiX/SbX (X = H, F, Cl and Br) monolayers with a record bulk band gap. NPG Asia Mater. 2014, 6, 147.

    Article  Google Scholar 

  15. Chuang, F. C.; Yao, L. Z.; Huang, Z. Q.; Liu, Y. T.; Hsu, C. H.; Das, T.; Lin, H.; Bansil, A. Prediction of large-gap two-dimensional topological insulators consisting of bilayers of group III elements with Bi. Nano Lett. 2014, 14, 2505–2508.

    Article  Google Scholar 

  16. Weng, H. M.; Dai, X.; Fang, Z. Transition-metal pentatelluride ZrTe5 and HfTe5: A paradigm for large-gap quantum spin Hall insulators. Phys. Rev. X 2014, 4, 011002.

    Google Scholar 

  17. Qian, X. F.; Liu, J. W.; Fu, L.; Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 2014, 346, 1344–1347.

    Article  Google Scholar 

  18. Xu, Y.; Yan, B. H.; Zhang, H. J.; Wang, J.; Xu, G.; Tang, P. Z.; Duan, W. H.; Zhang, S.-C. Large-gap quantum spin Hall insulators in tin films. Phys. Rev. Lett. 2013, 111, 136804.

    Article  Google Scholar 

  19. Liu, C.-C.; Feng, W. X.; Yao, Y. G. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 2011, 107, 076802.

    Article  Google Scholar 

  20. Ma, Y. D.; Dai, Y.; Wei, W.; Huang, B. B.; Whangbo, M.-H. Strain-induced quantum spin Hall effect in methyl-substituted germanane GeCH3. Sci. Rep. 2014, 4, 7297.

    Article  Google Scholar 

  21. Ma, Y. D.; Dai, Y.; Niu, C. W.; Huang, B. B. Halogenated two-dimensional germanium: Candidate materials for being of quantum spin Hall state. J. Mater. Chem. 2012, 22, 12587–12591.

    Article  Google Scholar 

  22. Liu, C.-C.; Jiang, H.; Yao, Y. G. Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B 2011, 84, 195430.

    Article  Google Scholar 

  23. Si, C.; Liu, J. W.; Xu, Y.; Wu, J.; Gu, B.-L.; Duan, W. H. Functionalized germanene as a prototype of large-gap two-dimensional topological insulators. Phys. Rev. B 2014, 89, 115429.

    Article  Google Scholar 

  24. Kane, C. L.; Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 2005, 95, 226801.

    Article  Google Scholar 

  25. Chen, Y. L.; Kanou, M.; Liu, Z. K.; Zhang, H. J.; Sobota, J. A.; Leuenberger, D.; Mo, S. K.; Zhou, B.; Yang, S.-L.; Kirchmann, P. S. et al. Discovery of a single topological Dirac fermion in the strong inversion asymmetric compound BiTeCl. Nat. Phys. 2013, 9, 704–708.

    Article  Google Scholar 

  26. Bahramy, M. S.; Yang, B.-J.; Arita. R.; Nagaosa, N. Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure. Nat. Commun. 2012, 3, 679.

    Article  Google Scholar 

  27. Wan, X. G.; Turner, A. M.; Vishwanath, A.; Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 2011, 83, 205101.

    Article  Google Scholar 

  28. Brüne, C.; Liu, C. X.; Novik, E. G.; Hankiewicz, E. M.; Buhmann, H.; Chen, Y. L.; Qi, X. L.; Shen, Z. X.; Zhang, S. C.; Molenkamp. L. W. Quantum Hall effect from the topological surface states of strained bulk HgTe. Phys. Rev. Lett. 2011, 106, 126803.

    Article  Google Scholar 

  29. Kuroda, K.; Ye, M.; Kimura, A.; Eremeev, S. V.; Krasovskii, E. E.; Chulkov, E. V.; Ueda, Y.; Miyamoto, K.; Okuda, T.; Shimada, K. et al. Experimental realization of a three-dimensional topological insulator phase in ternary chalcogenide TlBiSe2. Phys. Rev. Lett. 2010, 105, 146801.

    Article  Google Scholar 

  30. Arguilla, M. Q.; Jiang, S. S.; Chitara, B.; Goldberger, J. E. Synthesis and stability of two-dimensional Ge/Sn graphane alloys. Chem. Mater. 2014, 26, 6941–6946.

    Article  Google Scholar 

  31. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  Google Scholar 

  32. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  Google Scholar 

  33. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  34. Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.

    Article  Google Scholar 

  35. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  36. Monkhorst, H. J.; Pack, J. D. Special points for Brillouinzone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  37. Sofo, J. O.; Chaudhari, A. S.; Barber, G. D. Graphane: A two-dimensional hydrocarbon. Phys. Rev. B 2007, 75, 153401.

    Article  Google Scholar 

  38. Cahangirov, S.; Topsakal, M.; Akturk, E.; Sahin, H.; Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804.

    Article  Google Scholar 

  39. Sahin, H.; Cahangirov, S.; Topsakal, M.; Bekaroglu, E.; Akturk, E.; Senger, R. T.; Ciraci, S. Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations. Phys. Rev. B 2009, 80, 155453.

    Article  Google Scholar 

  40. Chen, Y. L.; Liu, Z. K.; Analytis, J. G.; Chu, J.-H.; Zhang, H. J.; Yan, B. H.; Mo, S.-K.; Moore, R. G.; Lu, D. H.; Fisher, I. R. et al. Single Dirac cone topological surface state and unusual thermoelectric property of compounds from a new topological insulator family. Phys. Rev. Lett. 2010, 105, 266401.

    Article  Google Scholar 

  41. Zhou, M.; Ming, W. M.; Liu, Z.; Wang, Z. F.; Li, P.; Liu, F. Epitaxial growth of large-gap quantum spin Hall insulator on semiconductor surface. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 14378–14381.

    Article  Google Scholar 

  42. Elias, D.; Nair, R. R.; Mohiuddin, T. M.; Morozov, S. V.; Blake, P.; Halsall, M. P.; Ferrari, A. C.; Boukhvalov, D. W.; Katsnelson, M. I.; Geim, A. K. et al. Control of graphene’s properties by reversible hydrogenation: Evidence for graphane. Science 2009, 323, 610–613.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yandong Ma or Thomas Heine.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Kou, L., Du, A. et al. Group 14 element-based non-centrosymmetric quantum spin Hall insulators with large bulk gap. Nano Res. 8, 3412–3420 (2015). https://doi.org/10.1007/s12274-015-0842-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0842-7

Keywords

Navigation