Log in

Deriving the three-dimensional structure of ZnO nanowires/nanobelts by scanning transmission electron microscope tomography

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Characterizing the three-dimensional (3D) shape of a nanostructure by conventional imaging techniques in scanning electron microscopy and transmission electron microscopy can be limited or complicated by various factors, such as two-dimensional (2D) projection, diffraction contrast and unsure orientation of the nanostructure with respect to the electron beam direction. In this paper, in conjunction with electron diffraction and imaging, the 3D morphologies of ZnO nanowires and nanobelts synthesized via vapor deposition were reconstructed by electron tomography in a scanning transmission electron microscope (STEM). The cross-sections of these one-dimensional (1D) nanostructures include triangle, hexagonal, and rectangle shapes. By combining the reconstructed shape with the crystalline information supplied by electron diffraction patterns recorded from the same nanowire/nanobelt, the growth direction and its exposed surfaces were uniquely identified. In total, three different growth directions were confirmed. These directions are 〈0001〉, 〈2\( \bar 1 \) \( \bar 1 \)0〉 and 〈2\( \bar 1 \) \( \bar 1 \)3〉 corresponding to 〈001〉, 〈100〉 and 〈101〉 orientations in three-index notation. The 〈0001〉 growth nanowires show triangle or hexagonal cross-sections, with exposed {01\( \bar 1 \)0} side surfaces. The dominant surfaces of the 〈2\( \bar 1 \) \( \bar 1 \)0〉 growth nanobelt are ±(0001) planes. Both hexagonal and rectangle cross-sections were observed in the 〈2\( \bar 1 \) \( \bar 1 \)3〉 growth ZnO nanostructures. Their surfaces include the {01\( \bar 1 \)0}, {\( \bar 1 \)101} and {\( \bar 2 \)112} planes. The nanobelts with a large aspect ratio of ∼10 normally grow along the 〈2\( \bar 1 \) \( \bar 1 \)0〉 direction, while nanobelts with small aspect ratio grow along 〈2\( \bar 1 \) \( \bar 1 \)3〉 growth direction. The approach and methodology demonstrated here can be extended to any nanostructures that can be crystalline, polycrystalline or even amorphous.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Käelblein, D.; Weitz, R. T.; Böttcher, H. J.; Ante, F.; Zschieschang, U.; Kern, K.; Klauk, H. Top-ghate ZnO nanowire transistors and integrated circuits with ultrathin self-assembled monolayer gate dielectric. Nano Lett. 2011, 11, 5309–5315.

    Article  Google Scholar 

  2. Sohn, J. I.; Choi, S. S.; Morris, S. M.; Bendall, J. S.; Coles, H. J.; Hong, W.-K.; Jo, G.; Lee, T.; Welland, M. E. Novel nonvolatile memory with multibit storage based on a ZnO nanowire transistor. Nano Lett. 2010, 10, 4316–4320.

    Article  CAS  Google Scholar 

  3. Chen, M. T.; Lu, M. P.; Wu, Y. J.; Song, J. H.; Lee, C. Y.; Lu, M. Y.; Chang, Y. C.; Chou, L. J.; Wang, Z. L.; Chen, L. J. Near UV LEDs made with in situ doped p-n homojunction ZnO nanowire arrays. Nano Lett. 2010, 10, 4387–4393.

    Article  CAS  Google Scholar 

  4. Lai, E.; Kim, W.; Yang, P. D. Vertical nanowire array-based light emitting diodes. Nano Res. 2008, 1, 123–128.

    Article  CAS  Google Scholar 

  5. Comini, E.; Faglia, G.; Sberveglieri, G.; Pan, Z. W.; Wang, Z. L. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 2002, 81, 1869–1871.

    Article  CAS  Google Scholar 

  6. Fei, P.; Yeh, P.-H.; Zhou, J.; Xu, S.; Gao, Y. F.; Song, J. H.; Gu, Y. D.; Huang, Y. Y.; Wang, Z. L. Piezoelectric potential gated field-effect transistor based on a free-standing ZnO wire. Nano Lett. 2009, 9, 3435–3439.

    Article  CAS  Google Scholar 

  7. Wang, X. D.; Zhou, J.; Song, J. H.; Liu, J.; Xu, N. S.; Wang, Z. L. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 2006, 6, 2768–2772.

    Article  CAS  Google Scholar 

  8. Zhou, J.; Fei, P.; Gu, Y. D.; Mai, W. J.; Gao, Y. F.; Yang, R. S.; Bao, G.; Wang, Z. L. Piezoelectric-potential-control led polarity-reversible Schottky diodes and switches of ZnO wires. Nano Lett. 2008, 8, 3973–3977.

    Article  CAS  Google Scholar 

  9. Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

    Article  CAS  Google Scholar 

  10. Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316, 102–105.

    Article  CAS  Google Scholar 

  11. Wang, Z. L. Piezotronic and piezophototronic effects. J. Phys. Chem. Lett. 2010, 1, 1388–1393.

    Article  CAS  Google Scholar 

  12. Zhou, J.; Gu, Y. D.; Fei, P.; Mai, W. J.; Gao, Y. F.; Yang, R. S.; Bao, G.; Wang, Z. L. Flexible piezotronic strain sensor. Nano Lett. 2008, 8, 3035–3040.

    Article  CAS  Google Scholar 

  13. Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Nanobelts of semiconducting oxides. Science 2001, 291, 1947–1949.

    Article  CAS  Google Scholar 

  14. Huang, M. H.; Wu, Y. Y.; Feick, H. N.; Tran, N.; Weber, E.; Yang, P. D. Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 2001, 13, 113–116.

    Article  CAS  Google Scholar 

  15. Xu, S.; Ding, Y.; Wei, Y. G.; Fang, H.; Shen, Y.; Sood, A. K.; Polla, D. L.; Wang, Z. L. Patterned growth of horizontal ZnO nanowire arrays. J. Am. Chem. Soc. 2009, 131, 6670–6671.

    Article  CAS  Google Scholar 

  16. Xu, S.; Wei, Y. G.; Kirkham, M.; Liu, J.; Mai, W. J.; Davidovic, D.; Snyder, R. L.; Wang, Z. L. Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst. J. Am. Chem. Soc. 2008, 130, 14958–14959.

    Article  CAS  Google Scholar 

  17. Yang, R. S.; Ding, Y.; Wang, Z. L. Deformation-free single-crystal nanohelixes of polar nanowires. Nano Lett. 2004, 4, 1309–1312.

    Article  CAS  Google Scholar 

  18. Wang, Z. L. Piezoelectric nanostructures: From growth phenomena to electric nanogenerators. MRS Bull. 2007, 32, 109–116.

    Article  Google Scholar 

  19. Wang, Z. L. Energy harvesting using piezoelectric nanowires—A correspondence on “Energy harvesting using nanowires?” by Alexe et al. Adv. Mater. 2009, 21, 1311–1315.

    Article  CAS  Google Scholar 

  20. Ding, Y.; Wang, Z. L. Structure analysis of nanowires and nanobelts by transmission electron microscopy. J. Phys. Chem. B 2004, 108, 12280–12291.

    Article  CAS  Google Scholar 

  21. Pennycook, S. J.; Nellist, P. D., Scanning Transmission Electron Microscopy Imaging and Analysis. Springer: New York, 2011.

    Book  Google Scholar 

  22. Koguchi, M.; Kakibayashi, H.; Tsuneta, R.; Yamaoka, M.; Niino, T.; Tanaka, N.; Kase, K.; Iwaki, M. Three-dimensional STEM for observing nanostructures. J. Electron Microsc. 2001, 50, 235–241.

    CAS  Google Scholar 

  23. Weyland, M. Electron tomography of catalysts. Top. Catal. 2002, 21, 175–183.

    Article  CAS  Google Scholar 

  24. De Rosier, D. J.; Klug, A. Reconstruction of three dimensional structures from electron micrographs. Nature 1968, 217, 130–134.

    Article  Google Scholar 

  25. Ortalan, V.; Herrera, M.; Morgan, D. G.; Browning, N. D. Application of image processing to STEM tomography of low-contrast materials. Ultramicroscopy 2009, 110, 67–81.

    Article  CAS  Google Scholar 

  26. Möbus, G.; Inkson, B. J. Nanoscale tomography in materials science. Mater. Today 2007, 10, 18–25.

    Article  Google Scholar 

  27. Sueda, S.; Yoshida, K.; Tanaka, N. Quantification of metallic nanoparticle morphology on TiO2 using HAADF-STEM tomography. Ultramicroscopy 2010, 110, 1120–1127.

    Article  CAS  Google Scholar 

  28. Hernändez-Garrido, J. C.; Yoshida, K.; Gai, P. L.; Boyes, E. D.; Christensen, C. H.; Midgley, P. A. The location of gold nanoparticles on titania: A study by high resolution aberration-corrected electron microscopy and 3D electron tomography. Catal. Today 2011, 160, 165–169.

    Article  Google Scholar 

  29. Gontard, L. C.; **schek, J. R.; Ou, H. Y.; Verbeeck, J.; Dunin-Borkowski, R. E. Three-dimensional fabrication and characterisation of core-shell nano-columns using electron beam patterning of Ge-doped SiO2. Appl. Phys. Lett. 2012, 100, 263113.

    Article  Google Scholar 

  30. Sato, K.; Aoyagi, K.; Konno, T. J. Three-dimensional shapes and distribution of FePd nanoparticles observed by electron tomography using high-angle annular dark-field scanning transmission electron microscopy. J. Appl. Phys. 2010, 107, 024304.

    Article  Google Scholar 

  31. Gontard, L. C.; Dunin-Borkowski, R. E.; Ozkaya, D. Three-dimensional shapes and spatial distributions of Pt and PtCr catalyst nanoparticles on carbon black. J. Microsc. 2008, 232, 248–259.

    Article  CAS  Google Scholar 

  32. Chung, S.-Y.; Kim, J.-G.; Kim, Y.-M.; Lee, Y.-B. Three-dimensional morphology of iron phosphide phases in a polycrystalline LiFePO4 matrix. Adv. Mater. 2011, 23, 1398–1403.

    Article  CAS  Google Scholar 

  33. Gontard, L. C.; Dunin-Borkowski, R. E.; Gass, M. H.; Bleloch, A. L.; Ozkaya, D. Three-dimensional shapes and structures of lamellar-twinned fcc nanoparticles using ADF STEM. J. Electron Microsc. 2009, 58, 167–174.

    Article  CAS  Google Scholar 

  34. Yoshida, K.; Ikuhara, Y. H.; Takahashi, S.; Hirayama, T.; Saito, T.; Sueda, S.; Tanaka, N.; Gai, P. L. The three-dimensional morphology of nickel nanodots in amorphous silica and their role in high-temperature permselectivity for hydrogen separation. Nanotechnology 2009, 20, 315703.

    Article  Google Scholar 

  35. Benlekbir, S.; Epicier, T.; Bausach, M.; Aouine, M.; Berhault, G. STEM HAADF electron tomography of palladium nanoparticles with complex shapes. Phil. Mag. Lett. 2009, 89, 145–153.

    Article  CAS  Google Scholar 

  36. Hungria, A. B.; Eder, D.; Windle, A. H.; Midgley, P. A. Visualization of the three-dimensional microstructure of TiO2 nanotubes by electron tomography. Catal. Today 2009, 143, 225–229.

    Article  CAS  Google Scholar 

  37. Pennington, R. S.; Konig, S.; Alpers, A.; Boothroyd, C. B.; Dunin-Borkowski, R. E. Reconstruction of an InAs nanowire using geometric and algebraic tomography. In 17th International Conference on Microscopy of Semiconducting Materials 2011, Cambridge, England, 2011, 012045.

    Google Scholar 

  38. Verheijen, M. A.; Algra, R. E.; Börgstrom, M. T.; Immink, G.; Sourty, E.; van Enckevort, W. J. P.; Vlieg, E.; Bakkers, E. P. A. M. Three-dimensional morphology of GaP-GaAs nanowires revealed by transmission electron microscopy tomography. Nano Lett. 2007, 7, 3051–3055.

    Article  CAS  Google Scholar 

  39. Kremer, J. R.; Mastronarde, D. N.; McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 1996, 116, 71–76.

    Article  CAS  Google Scholar 

  40. Ding, Y.; Wang, Z. L. Profile imaging of reconstructed polar and non-polar surfaces of ZnO. Surf. Sci. 2007, 601, 425–433.

    Article  CAS  Google Scholar 

  41. Gao, P. X.; Ding, Y.; Wang, Z. L. Crystallographic orientation-aligned ZnO nanorods grown by a tin catalyst. Nano Lett. 2003, 3, 1315–1320.

    Article  CAS  Google Scholar 

  42. Zhang, J. M.; Zhang, X. Z.; Chen, L.; Xu, J.; You, L. P.; Ye, H. Q.; Yu, D. P. In situ study of the growth of ZnO nanosheets using environmental scanning electron microscope. Appl. Phys. Lett. 2007, 90, 233104.

    Article  Google Scholar 

  43. Wei, Y. G.; Ding, Y.; Li, C.; Xu, S.; Ryo, J. H.; Dupuis, R.; Sood, A. K.; Polla, D. L.; Wang, Z. L. Growth of vertically aligned ZnO nanobelt arrays on GaN substrate. J. Phys. Chem. C 2008, 112, 18935–18937.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Lin Wang.

Electronic supplementary material

Supplementary material, approximately 9.12 MB.

Electronic supplementary material

Supplementary material, approximately 9.12 MB.

Electronic supplementary material

Supplementary material, approximately 9.12 MB.

Electronic supplementary material

Supplementary material, approximately 9.12 MB.

Electronic supplementary material

Supplementary material, approximately 9.12 MB.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Y., Zhang, F. & Wang, Z.L. Deriving the three-dimensional structure of ZnO nanowires/nanobelts by scanning transmission electron microscope tomography. Nano Res. 6, 253–262 (2013). https://doi.org/10.1007/s12274-013-0301-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0301-2

Keywords

Navigation