Log in

Response properties of the electrosensory neurons in hindbrain of the white sturgeon, Acipenser transmontanus

高首鲟背听侧核电感受神经元在电场刺激下的反应特性

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Objective

The passive electrosense is a primitive sensory modality in the Chondrostei, which include sturgeon and paddlefish. Using electroreceptors, these fish detect the weak electric fields from other animals or geoelectric sources, and use this information for prey detection or other behaviors. The primary afferent fibers innervating the electroreceptors project to a single hindbrain target called the dorsal octavolateral nucleus (DON), where the electrosensory information is first processed. Here, we investigated the electrophysiological properties of DON neurons.

Methods

Extracellular recording was used to investigate the response properties of DON neurons to dipole electric fields with different amplitudes and frequencies in the white sturgeon, Acipenser transmontanus.

Results

The DON neurons showed regular spontaneous activity and could be classified into two types: neurons with a low spontaneous rate (<10 Hz) and those with a high spontaneous rate (>10 Hz). In response to sinusoidal electric field stimuli, DON neurons showed sinusoidally-modulated and phase-locked firing. In addition, neurons showed opposite phase responses corresponding to the different directions of the dipole.

Conclusion

The response properties of DON neurons match the electrosensory biological function in sturgeon, as they match the characteristics of the electric fields of its prey.

摘要

目的

软骨硬鳞鱼类的电感受是一种古老的感觉系统, 它们通过电感受器官感受生物电场或非生物电场进行摄食等活动。支配电感受器的初级传入神经首先将电感受信息传递至后脑的背听侧核进行处理。本文探讨了鲟鱼背听侧核的电生理特性。

方法

采用胞外记录方法记录了高首鲟背听侧核在偶极子电场刺激下的神经元反应。

结果

背听侧核神经元有低频(<10 Hz)自发放电和高频(>10 Hz)自发放电两种, 在电场刺激下均产生明显的自发放电的调制和相位耦合反应, 同时部分神经元对偶极子电场的方向有选择性。

结论

鲟鱼的电感受神经元反应特征与其电感受的生物功能相适应。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bodznick D, Montgomery JC. The physiology of low-frequency electrosensory systems. In: Bullock TH, Hopkins CD, Popper AN, Fay RR (Eds.). Electroreception. New York: Springer, 2005: 132–153.

    Chapter  Google Scholar 

  2. Wilkens LA, Hofmann MH. Behavior of animals with passive, lowfrequency electrosensory systems. In: Bullock TH, Hopkins CD, Popper AN, Fay RR (Eds.). Electroreception. New York: Springer, 2005: 229–263.

    Chapter  Google Scholar 

  3. Bullock TH, Bodznick DA, Northcutt RG. The phylogenetic distribution of electroreception: Evidence for convergent evolution of a primitive vertebrate sense modality. Brain Res Rev 1983, 6(1): 25–46.

    Article  Google Scholar 

  4. Zupanc GKH, Bullock TH. From electrogenesis to electroreception: An overview. In: Bullock TH, Hopkins CD, Popper AN, Fay RR (Eds.). Electroreception. New York: Springer, 2005: 5–46.

    Chapter  Google Scholar 

  5. Wilkens LA, Hofmann MH. The paddlefish rostrum as an electrosensory organ: A novel adaptation for plankton feeding. BioScience 2007, 57(5): 399–407.

    Article  Google Scholar 

  6. Jørgensen JM. The morphology of the Lorenzinian ampullae of the sturgeon Acipenser ruthenus (Pisces: Chondrostei). Acta Zool (Stockh), 1980, 61: 87–92.

    Google Scholar 

  7. Jørgensen JM. Morphology of electroreceptive sensory organs. In: Bullock TH, Hopkins CD, Popper AN, Fay RR (Eds.). Electroreception. New York: Springer, 2005: 47–67.

    Chapter  Google Scholar 

  8. Hofmann MH, Falk M, Wilkens LA. Electrosensory brain stem neurons compute the time derivative of electric fields in the paddle-fish. Fluct Noise Lett 2004, 4(1): 129–138.

    Article  Google Scholar 

  9. Hofmann M, Chagnaud B, Wilkens L. Edge-detection filter improves spatial resolution in the electrosensory system of the paddle-fish. J Neurophysiol 2009, 102(2): 797–804.

    Article  PubMed  Google Scholar 

  10. Bell CC, Maler L. Central neuroanatomy of electrosensory systems in fish. In: Bullock TH, Hopkins CD, Popper AN, Fay RR (Eds.). Electroreception. New York: Springer, 2005: 68–111.

    Chapter  Google Scholar 

  11. Bodznick D, Montgomery J, Tricas T. Electroreception: extracting behaviorally important signals from noise. In: Collin SP, Marshall NJ (Eds.). Sensory Processing in Aquatic Environments, New York: Springer, 2003: 389–403.

    Chapter  Google Scholar 

  12. New JG. Medullary electrosensory processing in the little skate. I. Response characteristics of neurons in the dorsal octavolateralis nucleus. J Comp Physiol A 1990, 167(2): 285–294.

    Article  PubMed  CAS  Google Scholar 

  13. Chagnaud BP, Wilkens LA, Hofmann MH. Response properties of electrosensory neurons in the lateral mesencephalic nucleus of the paddlefish. J Comp Physiol A 2008, 194(3): 209–220.

    Article  Google Scholar 

  14. Hofmann MH, Chagnaud BP, Wilkens LA. Response properties of electrosensory afferent fibers and secondary brain stem neurons in the paddlefish. J Exp Biol 2005, 208(22): 4213–4222.

    Article  PubMed  Google Scholar 

  15. Kajikawa Y, Hackett TA. Entropy analysis of neuronal spike train synchrony. J Neurosci Methods 2005, 149(1): 90–93.

    Article  PubMed  Google Scholar 

  16. McCreery DB. Two types of electroreceptive lateral lemniscal neurons of the lateral line lobe of the catfish Ictalurus nebulosus; connections from the lateral line nerve and steady-state frequency response characteristics. J Comp Physiol A 1977, 113(3): 317–339.

    Article  Google Scholar 

  17. Hofmann MH, Jung SN, Siebenaller U, Preissner M, Chagnaud BP, Wilkens LA. Response properties of electrosensory units in the midbrain tectum of the paddlefish (Polyodon spathula Walbaum). J Exp Biol 2008, 211(5): 773–779.

    Article  PubMed  CAS  Google Scholar 

  18. Miller M. The ecology and functional morphology of feeding of North American sturgeon and paddlefish. In: Lebreton GTO, Beamish FwH, McKinley (Eds.). Sturgeons and Paddlefish of North America. Dordrecht: Kluwer Academic Publisher, 2004: 87–102.

    Google Scholar 

  19. Potts WTW, Hedges AJ. Gill potentials in marine teleosts. J Comp Physiol B 1991, 161(4): 401–405.

    Google Scholar 

  20. Basov B. Behavior of sterlet Acipenser ruthenus and Russian sturgeon A. gueldenstaedtii in low-frequency electric fields. J Ichthyol 1999, 39(9): 782–787.

    Google Scholar 

  21. Peters RC, Bretschneider F. Electric phenomena in the habitat of the catfish Ictalurus nebulosus LeS. J Comp Physiol A 1972, 81(4): 345–362.

    Article  Google Scholar 

  22. Peters RC, van Wessel T, van den Wollenberg BJ, Bretschneider F, Olijslagers AE. The bioelectric field of the catfish Ictalurus nebulosus. J Physiol Paris 2002, 96(5–6): 397–404.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiakun Song  (宋佳坤).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Herzog, H., Song, J. et al. Response properties of the electrosensory neurons in hindbrain of the white sturgeon, Acipenser transmontanus . Neurosci. Bull. 27, 422–429 (2011). https://doi.org/10.1007/s12264-011-1635-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-011-1635-y

Keywords

关键词

Navigation