Log in

Electrophysiological properties of spinal wide dynamic range neurons in neuropathic pain rats following spinal nerve ligation

脊神经结扎神经痛大鼠脊髓背角广动力范围神经元的电生理学特性

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Objective

The present study aimed to investigate the electrophysiological properties of wide dynamic range (WDR) neurons in spinal dorsal horn of rats with neuropathic pain induced by lumber 5 (L5) spinal nerve ligation (SNL) in a large size of samples.

Methods

Adult Sprague-Dawley rats were divided into normal and SNL groups. Electrophysiological technique was used to record the characteristics of WDR neurons in the spinal dorsal horn.

Results

Compared with the WDR neurons in normal rats, the WDR neurons in SNL rats showed an increase in excitability, manifested by an enlargement of the receptive field size, an increase in the proportion of neurons that exhibited spontaneous activities, decreases in the Cresponse threshold and latency, and an increase in the C-response duration. In addition, the numbers of Aβ- and C-fiberevoked discharges were smaller in SNL rats than in normal rats.

Conclusion

The excitability of spinal WDR neurons increased in rats with neuropathic pain induced by L5 SNL. The increase in excitability of WDR neurons may contribute to the development of neuropathic pain.

摘要

目的

探讨腰5 脊神经结扎(spinal nerve ligation, SNL)后, 大鼠脊髓背角的广动力范围(wide dynamic range, WDR)神经元电生理学特性的改变。

方法

将健康雄性Sprague-Dawley 大鼠分为**常组和SNL 组, 利用细胞外电生理学方法记录脊髓背角的WDR 神经元放电。

结果

与**常大鼠相比, SNL 组大鼠WDR 神经元兴奋性增加, 表现为感受野扩大、 有自发放电的神经元比例增加, 以及 C 纤维诱发放电的阈值降低、 潜伏期缩短、 发放时程增加。 此外, SNL 组大鼠WDR 神经元Aβ 和C 纤维诱发放电数目较**常大鼠降低。

结论

大鼠腰5 脊神经结扎后主要引起WDR 神经元的兴奋性增加。 WDR 神经元的兴奋性增加可能参与神经病理痛的发生。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 2009, 10: 895–926.

    Article  PubMed  Google Scholar 

  2. Campbell JN, Meyer RA. Mechanisms of neuropathic pain. Neuron 2006, 52: 77–92.

    Article  CAS  PubMed  Google Scholar 

  3. Chen J. Toward the brain matrix of pain. Neurosci Bull 2009, 25(5): 234–236.

    Article  CAS  PubMed  Google Scholar 

  4. Guan Y, Wacnik PW, Yang F, Carteret AF, Chung CY, Meyer RA, et al. Spinal cord stimulation-induced analgesia: electrical stimulation of dorsal column and dorsal roots attenuates dorsal horn neuronal excitability in neuropathic rats. Anesthesiology 2010, 113: 1392–1405.

    Article  PubMed  Google Scholar 

  5. Chapman V, Suzuki R, Dickenson AH. Electrophysiological characterization of spinal neuronal response properties in anaesthetized rats after ligation of spinal nerves L5–L6. J Physiol (Lond) 1998, 507: 881–894.

    Article  CAS  Google Scholar 

  6. Chu KL, Faltynek CR, Jarvis MF, McGaraughty S. Increased WDR spontaneous activity and receptive field size in rats following a neuropathic or inflammatory injury: implications for mechanical sensitivity. Neurosci Lett 2004, 372: 123–126.

    Article  CAS  PubMed  Google Scholar 

  7. Pertovaara A, Kontinen VK, Kalso EA. Chronic spinal nerve ligation induces changes in response characteristics of nociceptive spinal dorsal horn neurons and in their descending regulation originating in the periaqueductal gray in the rat. Exp Neurol 1997, 147: 428–436.

    Article  CAS  PubMed  Google Scholar 

  8. Suzuki R, Kontinen VK, Matthews E, Williams E, Dickenson AH. Enlargement of the receptive field size to low intensity mechanical stimulation in the rat spinal nerve ligation model of neuropathy. Exp Neurol 2000, 163: 408–413.

    Article  CAS  PubMed  Google Scholar 

  9. Kontinen VK, Dickenson AH. Effects of midazolam in the spinal nerve ligation model of neuropathic pain in rats. Pain 2000, 85: 425–431.

    Article  CAS  PubMed  Google Scholar 

  10. Sokal DM, Chapman V. Effects of spinal administration of muscimol on C- and A-fibre evoked neuronal responses of spinal dorsal horn neurones in control and nerve injured rats. Brain Res 2003, 962: 213–220.

    Article  CAS  PubMed  Google Scholar 

  11. Suzuki R, Rahman W, Hunt SP, Dickenson AH. Descending facilitatory control of mechanically evoked responses is enhanced in deep dorsal horn neurones following peripheral nerve injury. Brain Res 2004, 1019: 68–76.

    Article  CAS  PubMed  Google Scholar 

  12. Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983, 16: 109–110.

    Article  CAS  PubMed  Google Scholar 

  13. Geng SJ, Liao FF, Dang WH, Ding X, Liu XD, Cai J, et al. Contribution of the spinal cord BDNF to the development of neuropathic pain by activation of the NR2B-containing NMDA receptors in rats with spinal nerve ligation. Exp Neurol 2010, 222: 256–266.

    Article  CAS  PubMed  Google Scholar 

  14. Jiang YQ, **ng GG, Wang SL, Tu HY, Chi YN, Li J, et al. Axonal accumulation of hyperpolarization-activated cyclic nucleotidegated cation channels contributes to mechanical allodynia after peripheral nerve injury in rat. Pain 2008, 137: 495–506.

    Article  CAS  PubMed  Google Scholar 

  15. Kim SH, Chung JM. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 1992, 50: 355–363.

    Article  CAS  PubMed  Google Scholar 

  16. Sun Q, **ng GG, Tu HY, Han JS, Wan Y. Inhibition of hyperpolarization-activated current by ZD7288 suppresses ectopic discharges of injured dorsal root ganglion neurons in a rat model of neuropathic pain. Brain Res 2005, 1032: 63–69.

    Article  CAS  PubMed  Google Scholar 

  17. **ng GG, Liu FY, Qu XX, Han JS, Wan Y. Long-term synaptic plasticity in the spinal dorsal horn and its modulation by electroacupuncture in rats with neuropathic pain. Exp Neurol 2007, 208: 323–332.

    PubMed  Google Scholar 

  18. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994, 53: 55–63.

    Article  CAS  PubMed  Google Scholar 

  19. Dixon WJ. Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 1980, 20: 441–462.

    Article  CAS  PubMed  Google Scholar 

  20. Liu FY, **ng GG, Qu XX, Xu IS, Han JS, Wan Y. Roles of 5-hydroxytryptamine (5-HT) receptor subtypes in the inhibitory effects of 5-HT on C-fiber responses of spinal wide dynamic range neurons in rats. J Pharmacol Exp Ther 2007, 321: 1046–1053.

    Article  CAS  PubMed  Google Scholar 

  21. Qu XX, Cai J, Li MJ, Chi YN, Liao FF, Liu FY, et al. Role of the spinal cord NR2B-containing NMDA receptors in the development of neuropathic pain. Exp Neurol 2009, 215: 298–307.

    Article  CAS  PubMed  Google Scholar 

  22. Liu FY, Qu XX, Ding X, Cai J, Jiang H, Wan Y, et al. Decrease in the descending inhibitory 5-HT system in rats with spinal nerve ligation. Brain Res 2010, 1330: 45–60.

    Article  CAS  PubMed  Google Scholar 

  23. Kim HK, Kim JH, Gao X, Zhou JL, Lee I, Chung K, et al. Analgesic effect of vitamin E is mediated by reducing central sensitization in neuropathic pain. Pain 2006, 122: 53–62.

    Article  CAS  PubMed  Google Scholar 

  24. Cumberbatch MJ, Carlson E, Wyatt A, Boyce S, Hill RG, Rupniak NM. Reversal of behavioural and electrophysiological correlates of experimental peripheral neuropathy by the NK1 receptor antagonist GR205171 in rats. Neuropharmacology 1998, 37: 1535–1543.

    Article  CAS  PubMed  Google Scholar 

  25. Hu JW, Sessle BJ, Raboisson P, Dallel R, Woda A. Stimulation of craniofacial muscle afferents induces prolonged facilitatory effects in trigeminal nociceptive brain-stem neurones. Pain 1992, 48: 53–60.

    Article  CAS  PubMed  Google Scholar 

  26. Tabo E, **ks SL, Eisele JH Jr, Carstens E. Behavioral manifestations of neuropathic pain and mechanical allodynia, and changes in spinal dorsal horn neurons, following L4-L6 dorsal root constriction in rats. Pain 1999, 80: 503–520.

    Article  CAS  PubMed  Google Scholar 

  27. Schoffnegger D, Ruscheweyh R, Sandkühler J. Spread of excitation across modality borders in spinal dorsal horn of neuropathic rats. Pain 2008, 135: 300–310.

    Article  CAS  PubMed  Google Scholar 

  28. Besse D, Lombard MC, Besson JM. The distribution of mu and delta opioid binding sites belonging to a single cervical dorsal root in the superficial dorsal horn of the rat spinal cord: A quantitative autoradiographic study. Eur J Neurosci 1991, 3: 1343–1352.

    Article  PubMed  Google Scholar 

  29. Shehab SA. Acute and chronic sectioning of fifth lumbar spinal nerve has equivalent effects on the primary afferents of sciatic nerve in rat spinal cord. J Comp Neurol 2009, 517: 481–492.

    Article  PubMed  Google Scholar 

  30. D’Mello R, Dickenson AH. Spinal cord mechanisms of pain. Br J Anaesth 2008, 101: 8–16.

    Article  PubMed  Google Scholar 

  31. Woolf CJ, Shortland P, Coggeshall RE. Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature 1992, 355: 75–78.

    Article  CAS  PubMed  Google Scholar 

  32. Leem JW, Park ES, Paik KS. Electrophysiological evidence for the antinociceptive effect of transcutaneous electrical stimulation on mechanically evoked responsiveness of dorsal horn neurons in neuropathic rats. Neurosci Lett 1995, 192: 197–200.

    Article  CAS  PubMed  Google Scholar 

  33. Sun Q, Tu H, **ng GG, Han JS, Wan Y. Ectopic discharges from injured nerve fibers are highly correlated with tactile allodynia only in early, but not late, stage in rats with spinal nerve ligation. Exp Neurol 2005, 191: 128–136.

    Article  PubMed  Google Scholar 

  34. Wu G, Ringkamp M, Murinson BB, Pogatzki EM, Hartke TV, Weerahandi HM, et al. Degeneration of myelinated efferent fibers induces spontaneous activity in uninjured C-fiber afferents. J Neurosci 2002, 22: 7746–7753.

    CAS  PubMed  Google Scholar 

  35. Costigan M, Scholz J, Woolf CJ. Neuropathic pain: a maladap tive response of the nervous system to damage. Annu Rev Neurosci 2009, 32: 1–32.

    Article  CAS  PubMed  Google Scholar 

  36. Sotgiu ML, Biella G. Contribution of central sensitization to the pain-related abnormal activity in neuropathic rats. Somatosens Mot Res 2000, 17: 32–38.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You Wan  (万有).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, FY., Qu, XX., Cai, J. et al. Electrophysiological properties of spinal wide dynamic range neurons in neuropathic pain rats following spinal nerve ligation. Neurosci. Bull. 27, 1–8 (2011). https://doi.org/10.1007/s12264-011-1039-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-011-1039-z

Keywords

关键词

Navigation