Log in

Effect of neuronal excitotoxicity on Munc18-1 distribution in nuclei of rat hippocampal neuron and primary cultured neuron

神经元兴奋性毒性对Munc18-1 蛋白在大鼠海马神经元和原代培养神经元胞核内分布的影响

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Objective

Munc18-1 has an important role in neurotransmitter release, and controls every step in the exocytotic pathway in the central nervous system. In the present study, whether epileptic seizure causes a change of Munc18 localization in neuronal nuclei was analyzed.

Methods

Epilepsy models were established by injection of kainic acid (KA) solution into hippocampus of Sprague-Dawley (SD) rats or intraperitoneal injection of KA in Kunming mice. The hippocampal neurons were prepared from embryonic day 18 SD rats, and cultured in neurobasal medium, followed by treatment with glutamate for 3 h. Neuronal and glial nuclei of hippocampus were separated by sucrose density gradient centrifugation. The nucleus-enriched fractions were stained with 0.1% Cresyl Violet for morphological assay. Immunochemistry and immunoelectron microscopy with anti-Munc18-1 antibody were used to determine the nuclear localization of Munc18-1. Immunoblotting was used to detect the protein level of Munc18-1.

Results

The localization of Munc18-1 in nucleus of rat hippocampal neuron was confirmed by immunochemistry, immunoelectron microscopy, and immunoblotting detection of neuronal nucleus fraction. In animals receiving intrahippocampal or intraperitoneal injection of KA, immunostaining revealed that the expression of Munc18-1 decreased in pyramidal cell layer of CA regions, as well as in hilus and granular cell layer of dentate gyrus in hippocampus. Moreover, immunoblotting analysis showed that the expression level of Munc18-1 in nucleus fraction of hippocampus significantly decreased in KA-treated animals. The relationship between the change of Munc18-1 expression in neuronal nuclei and neuronal over-activation was also tested in primary cultured neurons. After treatment with 50 μmol/L glutamate acid for 3 h, Munc18-1 level was decreased in nucleus fraction and increased in cytoplasmic fraction of primary cultured neurons.

Conclusion

These results suggest that excitatory stimulation can induce the distribution change of Munc18-1 in neuron, which may subsequently modulate neuronal functions in brain.

摘要

目的

Munc18-1在中枢神经系统递质释放过程中具有重要作用, 控制着突触囊泡释放步骤的每一个环节。 Munc18-1功能异常与癫痫发病相关。 本文主要探讨癫痫是否会引起神经元胞核内Munc18-1定位的改变。

方法

通过海马内注射海人藻酸建立Sprague-Dawley (SD)大鼠癫痫模型, 腹腔注射海人藻酸建立昆明小鼠癫痫模型。 分离胎龄18天SD大鼠海马神经元, 用Neurobasal培养基培养7天后, 用谷氨酸处理3 h。 用8517糖密度梯度离心法分离神经元和神经胶质细胞的细胞核组份, 通过甲酚紫染色对上述富含细胞核的组份进行形态学鉴别。 用免疫组化和免疫电镜分析法确定Munc18-1的细胞核定位。 免疫印迹法检测不同细胞组分的Munc18-1蛋白的表达水**。

结果

免疫组化、 免疫电镜以及对神经元细胞核组份的免疫印迹证实了Munc18-1在海马神经元细胞核的分布定位。 在海人藻酸诱导癫痫的动物海马内, 免疫组化染色显示Munc18-1在海马CA区9525体细胞层、 9F7F状回9897粒细胞层和门区的多型细胞表达减少。 同时, 免疫印迹分析表明, Munc18-1在海马神经元胞核中的表达水**明显下降。 免疫印迹检测显示, 原代培养神经元经50 μmol/L谷氨酸处理3 h后, Munc18-1在神经元胞核中的分布减少, 而胞浆组份中含量增加。 免疫荧光的形态学检测也显示部分神经元明显失去了Munc18-1在细胞核聚集分布的特征。

结论

兴奋性刺激能够使Munc18-1在神经元的表达分布发生改变, 这种变化可能参与调节脑神经元的功能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hata Y, Slaughter CA, Südhof TC. Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature 1993, 366: 347–351.

    Article  PubMed  CAS  Google Scholar 

  2. Han GA, Malintan NT, Collins BM, Meunier FA, Sugita S. Munc18-1 as a key regulator of neurosecretion. J Neurochem 2010, 115: 1–10.

    Article  PubMed  CAS  Google Scholar 

  3. Toonen RF. Role of Munc18-1 in synaptic vesicle and large densecore vesicle secretion. Biochem Soc Trans 2003, 31: 848–850.

    Article  PubMed  CAS  Google Scholar 

  4. Toonen RF, Verhage M. Munc18-1 in secretion: lonely Munc joins SNARE team and takes control. Trends Neurosci 2007, 30: 564–572.

    Article  PubMed  CAS  Google Scholar 

  5. Verhage M, Maia AS, Plomp JJ, Brussaard AB, Heeroma JH, Vermeer H, et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 2000, 287: 864–869.

    Article  PubMed  CAS  Google Scholar 

  6. Yang R, Puranam RS, Butler LS, Qian WH, He XP, Moyer MB, et al. Autoimmunity to munc-18 in Rasmussen’s encephalitis. Neuron 2000, 28: 375–383.

    Article  PubMed  CAS  Google Scholar 

  7. Alvarez-Barón E, Bien CG, Schramm J, Elger CE, Becker AJ, Schoch S. Autoantibodies to Munc18, cerebral plasma cells and B-lymphocytes in Rasmussen encephalitis. Epilepsy Res 2008, 80: 93–97.

    Article  PubMed  Google Scholar 

  8. Saitsu H, Kato M, Mizuguchi T, Hamada K, Osaka H, Tohyama J, et al. De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy. Nat Genet 2008, 40: 782–788.

    Article  PubMed  CAS  Google Scholar 

  9. Shetty KT, Kaech S, Link WT, Jaffe H, Flores CM, Wray S, et al. Molecular characterization of a neuronal-specific protein that stimulates the activity of Cdk5. J Neurochem 1995, 64: 1988–1995.

    Article  PubMed  CAS  Google Scholar 

  10. Steiner P, Sarria JC, Huni B, Marsault R, Catsicas S, Hirling H. Overexpression of neuronal Sec1 enhances axonal branching in hippocampal neurons. Neuroscience 2002, 113: 893–905.

    Article  PubMed  CAS  Google Scholar 

  11. Bhaskar K, Shareef MM, Sharma VM, Shetty AP, Ramamohan Y, Pant HC, et al. Co-purification and localization of Munc18-1 (p67) and Cdk5 with neuronal cytoskeletal proteins. Neurochem Int 2004, 44: 35–44.

    Article  PubMed  CAS  Google Scholar 

  12. Sharma VM, Shareef MM, Bhaskar K, Kalidas S, Shetty PA, Christopher R, et al. Nuclear localization of Munc18-1 (p67) in the adult rat brain and PC12 cells. Neurochem Int 2005, 47: 225–234.

    Article  PubMed  CAS  Google Scholar 

  13. Hashimoto K, Watanabe K, Nishimura T, Iyo M, Shirayama Y, Minabe Y. Behavioral changes and expression of heat shock protein hsp-70 mRNA, brain-derived neurotrophic factor mRNA, and cyclooxygenase-2 mRNA in rat brain following seizures induced by systemic administration of kainic acid. Brain Res 1998, 804: 212–223.

    Article  PubMed  CAS  Google Scholar 

  14. Banker GA, Cowan WM. Rat hippocampal neurons in dispersed cell culture. Brain Res 1977, 126: 397–342.

    Article  PubMed  CAS  Google Scholar 

  15. Yan J, Sun XB, Wang HQ, Zhao H, Zhao XY, Xu YX, et al. Chronic restraint stress alters the expression and distribution of phosphorylated tau and MAP2 in cortex and hippocampus of rat brain. Brain Res 2010, 1347: 132–141.

    Article  PubMed  CAS  Google Scholar 

  16. Schmued LC, Hopkins KJ. Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res 2000, 874: 123–130.

    Article  PubMed  CAS  Google Scholar 

  17. Li JL, Wang D, Kaneko T, Shigemoto R, Nomura S, Mizuno N. The relationship between neurokinin-1 receptor and substance P in the medullary dorsal horn: a light and electron microscopic immunohistochemical study in the rat. Neurosci Res 2000, 36: 327–334.

    Article  PubMed  CAS  Google Scholar 

  18. Thompson RJ. Studies on RNA synthesis in two populations of nuclei from the mammalian cerebral cortex. J Neurochem 1973, 21: 19–40.

    Article  PubMed  CAS  Google Scholar 

  19. Rodkey TL, Liu S, Barry M, McNew JA. Munc18a scaffolds SNARE assembly to promote membrane fusion. Mol Biol Cell 2008, 19: 5422–5434.

    Article  PubMed  CAS  Google Scholar 

  20. Chan AW, Khanna R, Li Q, Stanley EF. Munc18: a presynaptic transmitter release site N type (CaV2.2) calcium channel interacting protein. Channels (Austin) 2007, 1: 11–20.

    Google Scholar 

  21. Sperk G. Kainic acid seizures in the rat. Prog Neurobiol 1994, 42: 1–32.

    Article  PubMed  CAS  Google Scholar 

  22. Unnerstall JR, Wamsley JK. Autoradiographic localization of highaffinity [3H]kainic acid binding sites in the rat forebrain. Eur J Pharmacol 1983, 86: 361–371.

    Article  PubMed  CAS  Google Scholar 

  23. Wan P, Zhang YP, Yan J, Xu YX. Wang HQ, Yang R, et al. Glutamate enhances the surface distribution and release of Munc18 in cerebral cortical neurons. Neurosci Bull 2010, 26: 273–281.

    Article  PubMed  CAS  Google Scholar 

  24. Choi DW. Calcium and excitotoxic neuronal injury. Ann N Y Acad Sci 1994, 747: 162–171.

    Article  PubMed  CAS  Google Scholar 

  25. Schauwecker PE. Neuroprotection by glutamate receptor antagonists against seizure-induced excitotoxic cell death in the aging brain. Exp Neurol 2010, 224: 207–218.

    Article  PubMed  CAS  Google Scholar 

  26. Takahashi M, Iseki E, Kosaka K. Cdk5 and munc-18/p67 co-localization in early stage neurofibrillary tangles-bearing neurons in Alzheimer type dementia brains. J Neurol Sci 2000, 172: 63–69.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cui-Qing Zhu  (朱粹青).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, YP., Wan, P., Wang, HQ. et al. Effect of neuronal excitotoxicity on Munc18-1 distribution in nuclei of rat hippocampal neuron and primary cultured neuron. Neurosci. Bull. 27, 163–172 (2011). https://doi.org/10.1007/s12264-011-1007-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-011-1007-7

Keywords

关键词

Navigation