Log in

Changes in Fungal Community and Gene Expression of Specific Ligninolytic Enzymes in Response to Wood Decay

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Microbial communities, particularly Basidiomycota fungi, play crucial roles in ecosystem functioning, including wood decay and the recycling of carbon and nutrients. However, the relationship between fungal diversity and wood decomposition remains poorly understood. This study investigated the effect of fungal community, gene expression, and activity of specific ligninolytic enzymes on wood decay in pine, cedar, and alkaline copper quaternary (ACQ)-treated pines for 30 months. The fungal community and gene expression levels were characterized using DNA sequencing and RT–qPCR, respectively. The Azure-B assay and phenol red test were conducted to determine enzyme activity. The results showed that non-wood-decaying fungi dominated early in the decay process, whereas true wood-decaying fungi, such as Trametes sp., dominated later. Visual decay ratings and modulus of elasticity data implied that pine deteriorated more than cedar and that ACQ treatment helped prevent deterioration of pine. The gene expression levels of lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase (Lcc) produced by the predominant fungus, T. elegans, varied depending on the wood type. LiP expression was the highest in ACQ-treated pines after 10 months of treatment. MnP expression was higher in both decay-resistant woods (cedar- and ACQ-treated pines) than in untreated pines. No Lcc expression was detected. Moreover, the specific activity of these enzymes was generally higher in untreated pine than in the decay-resistant wood. This study contributes to the understanding of the role of fungal communities in wood decay and the impact of preservation treatments on the gene expression and activity of wood decay enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Abbreviations

MOE loss:

modulus of elasticity loss of each wood stake after decay period

Initial MOE:

modulus of elasticity of each wood stake at the initial measuring

Current MOE:

modulus of elasticity of each wood stake at the current measuring

References

  1. Choi, J. E., S. H. Choi, J.-S. Lee, K. C. Lee, S. M. Kang, J. I. Kim, M. S. Choi, H. G. Kim, W. T. Seo, K. Y. Lee, B. C. Moon, and Y. M. Kang (2018) Analysis of microbial communities in local cultivars of astringent persimmon (Diospyros kaki) fruits grown in Gyeongnam Province of Korea. J. Environ. Biol. 39: 237–246.

    Article  CAS  Google Scholar 

  2. Kang, Y. M., J. E. Choi, R. Komakech, J. H. Park, D. W. Kim, K. M. Cho, S. M. Kang, S. H. Choi, K. C. Song, C. M. Ryu, K. C. Lee, and J.-S. Lee (2017) Characterization of a novel yeast species Metschnikowia persimmonesis KCTC 12991BP (KIOM G15050 type strain) isolated from a medicinal plant, Korean persimmon calyx (Diospyros kaki Thumb). AMB Express 7: 199.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rahmat, E., I. Park, and Y. Kang (2021) The whole-genome sequence of the novel yeast species Metschnikowia persimmonesis isolated from medicinal plant Diospyros kaki Thunb. G3 (Bethesda) 11: jkab246.

    Article  CAS  PubMed  Google Scholar 

  4. Vincent, S. G. T., T. Jennerjahn, and K. Ramasamy (2021) Chapter 6 - Assessment of microbial structure and functions in coastal sediments. pp. 167–185. In: S. G. T., Vincent, T. Jennerjahn, and K. Ramasamy (eds.) Microbial Communities in Coastal Sediments. Elsevier.

  5. Hashimoto, K., M. Yoshida, and K. Hasumi (2011) Isolation and characterization of CcAbf62A, a GH62 α-L-Arabinofuranosidase, from the basidiomycete Coprinopsis cinerea. Biosci. Biotechnol. Biochem. 75: 342–345.

    Article  CAS  PubMed  Google Scholar 

  6. Riley, R., A. A. Salamov, D. W. Brown, L. G. Nagy, D. Floudas, B. W. Held, A. Levasseur, V. Lombard, E. Morin, R. Otillar, E. A. Lindquist, H. Sun, K. M. LaButti, J. Schmutz, D. Jabbour, H. Luo, S. E. Baker, A. G. Pisabarro, J. D. Walton, R. A. Blanchette, B. Henrissat, F. Martin, D. Cullen, D. S. Hibbett, and I. V. Grigoriev (2014) Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc. Natl. Acad. Sci. U. S. A. 111: 9923–9928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arantes, V., A. M. F. Milagres, T. R. Filley, and B. Goodell (2011) Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: the relevance of nonenzymatic Fenton-based reactions. J. Ind. Microbiol. Biotechnol. 38: 541–555.

    Article  CAS  PubMed  Google Scholar 

  8. Mai, C., U. Kues, and H. Militz (2004) Biotechnology in the wood industry. Appl. Microbiol. Biotechnol. 63: 477–494.

    Article  CAS  PubMed  Google Scholar 

  9. Baldrian, P. and V. Valášková (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol. Rev. 32: 501–521.

    Article  CAS  PubMed  Google Scholar 

  10. Pérez, J., J. Muñoz-Dorado, T. de la Rubia, and J. Martínez (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int. Microbiol. 5: 53–63.

    Article  PubMed  Google Scholar 

  11. Dashtban, M., H. Schraft, T. A. Syed, and W. Qin (2010) Fungal biodegradation and enzymatic modification of lignin. Int. J. Biochem. Mol. Biol. 1: 36–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kang, Y., L. Prewitt, S. Diehl, and D. Nicholas (2010) Screening of basidiomycetes and gene expression of selected lignin modifying enzymes of Phlebia radiata during biodeterioration of three wood types. Int. Biodeter. Biodegr. 64: 545–553.

    Article  CAS  Google Scholar 

  13. Prewitt, L., Y. Kang, M. L. Kakumanu, and M. Williams (2014) Fungal and bacterial community succession differs for three wood types during decay in a forest soil. Microb. Ecol. 68: 212–221.

    Article  PubMed  Google Scholar 

  14. ASTM Standard D1758-05 (2005) Standard test method of evaluating wood preservatives by field tests with stakes. https://cdn.standards.iteh.ai/samples/44121/077f5053470b4a3aaf1f8628426cb0c0/ASTM-D1758-05.pdf

  15. Li, G., D. D. Nicholas, and T. P. Schultz (2003) Measurement of wood decay by dynamic MOE in an accelerated soil contact test. https://www.irg-wp.com/irgdocs/details.php7c824d2b6-e429-e6b4-d861-c88583ad97f9

  16. Glassman, S. I., C. Weihe, J. Li, M. B. N. Albright, C. I. Looby, A. C. Martiny, K. K. Treseder, S. D. Allison, and J. B. H. Martiny (2009) Decomposition responses to climate depend on microbial community composition. Proc. Natl. Acad. Sci. U S A 115: 11994–11999.

    Article  Google Scholar 

  17. Archibald, F. S. (1992) A new assay for lignin-type peroxidases employing the dye azure B. Appl. Environ. Microbiol. 58: 3110–3116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vares, T., M. Kalsi, and A. Hatakka (1995) Lignin peroxidases, manganese peroxidases, and other ligninolytic enzymes produced by Phlebia radiata during solid-state fermentation of wheat straw. Appl. Environ. Microbiol. 61: 3515–3520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Greaves, H. (1971) The bacterial factor in wood decay. Wood. Sci. Technol. 5: 6–16.

    Article  Google Scholar 

  20. Blanchette, R. A. (2000) A review of microbial deterioration found in archaeological wood from different environments. Int. Biodeterior. Biodegrad. 46: 189–204.

    Article  Google Scholar 

  21. Clausen, C. A. (1996) Bacterial associations with decaying wood: a review. Int. Biodeterior. Biodegrad. 37: 101–107.

    Article  Google Scholar 

  22. Greaves, H. (1970) The effect of some wood-inhabiting bacteria on the permeability characteristics and microscopic features of Eucalyptus regnans and Pinus radiata sapwood and heartwood. Holzforschung 24: 6–14.

    Article  Google Scholar 

  23. Williamson, R. A. and P. R. Nickens (2000) Science and Technology in Historic Preservation. Springer.

  24. Amirta, R., T. Tanabe, T. Watanabe, Y. Honda, M. Kuwahara, and T. Watanabe (2006) Methane fermentation of Japanese cedar wood pretreated with a white rot fungus, Ceriporiopsis subver-mispora. J. Biotechnol. 123: 71–77.

    Article  CAS  PubMed  Google Scholar 

  25. Illman, B. L., V. W. Yang, and L. Ferge (2000) Bioprocessing preservativet-reated waste wood. https://www.fs.usda.gov/research/treesearch/5782

  26. Okano, K., M. Kitagawa., Y. Sasaki, and T. Watanabe (2005) Conversion of Japanese red cedar (Cryptomeria japonica) into a feed for ruminants by white-rot basidiomycetes. Anim. Feed Sci. Technol. 120: 235–243.

    Article  Google Scholar 

  27. Rajala, T., M. Peltoniemi, T. Pennanen, and R. Mäkipää (2012) Fungal community dynamics in relation to substrate quality of decaying Norway spruce (Picea abies [L.] Karst.) logs in boreal forests. FEMS Microbiol. Ecol. 81: 494–505.

    Article  CAS  PubMed  Google Scholar 

  28. Levy, J. F. and D. E. Eveleigh (1987) The natural history of the degradation of wood [and discussion]. Philos. Trans. R. Soc. Lond. A. Math. Phys. Sci. 321: 423–433.

    Article  Google Scholar 

  29. Scheffer, T. C. and J. J. Morrell (1998) Natural durability of wood: a worldwide checklist of species. https://owic.oregonstate.edu/sites/default/files/pubs/durability.pdf

  30. Barnes, H. M., G. B. Lindsey, and J. M. Hill (2008) Mechanical properties of southern pine treated with copper betaine. Proceedings, American Wood-Preservers’ Association. 104: 89–95.

    Google Scholar 

  31. Tekere, M., R. Zvauya, and J. S. Read (2001) Ligninolytic enzyme production in selected sub-tropical white rot fungi under different culture conditions. J. Basic Microbiol. 41: 115–129.

    Article  CAS  PubMed  Google Scholar 

  32. Lara, M. A. A. J. Rodríguez-Malaver, O. J. Rojas, O. Holmquist, A. M. Gonzalez, J. Bullón, N. Peñaloza, and E. Araujo (2003) Black liquor lignin biodegradation by Trametes elegans. Int. Biodeter. Biodegr. 52: 167–173.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) (NSN2311020: NRF 2023R1A2C 300470611) through the Ministry of Science and ICT, Republic of Korea. Additionally, it was supported by Forest Products and Industry Department, National Institute of Forest Science (NiFoS), Republic of Korea and Department of Forest Products, Mississippi State University, USA.

Author information

Authors and Affiliations

Authors

Contributions

ML: Conceptualization, data collection, writing original draft. ER: Data interpretation and supervision, review, and manuscript editing. LP: Experimental design, methodology validation. RG: Manuscript review. YB: Manuscript review. CHK: Manuscript review, project collaborator. YK: Data collection, supervision, project administration.

Corresponding author

Correspondence to Youngmin Kang.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M., Rahmat, E., Prewitt, L. et al. Changes in Fungal Community and Gene Expression of Specific Ligninolytic Enzymes in Response to Wood Decay. Biotechnol Bioproc E 28, 826–834 (2023). https://doi.org/10.1007/s12257-023-0113-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-023-0113-5

Keywords

Navigation