Log in

Natural/Synthetic Polymer Materials for Bioink Development

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) printing (or additive manufacturing) is a manufacturing technology that produces 3D objects layer-by-layer automatically. Since the 1980s, 3D printing has been used in various fields, ranging from automobiles to medicine. In regenerative medicine and tissue engineering fields, this technique has developed with the advance of the ink material mostly composed of the live cells within. Additionally, it is also required to meet the mechanical durabilities, easy printability, and low toxic effects or immunogenicity. Therefore, it is essential to consider the suitability of ink materials in 3D bio-printing. Various printing materials can be selected, whether single or hybrid, by incorporating two or more inks. Among them, this paper focuses mainly on two major categories: natural polymers and synthetic polymers. The natural polymers have similar properties with extracellular matrix, biocompatibility, and biodegradability. On the other hand, synthetic polymers have adjustable mechanical properties and crosslinking ability according to various stimuli. This paper describes the properties, advantages/disadvantages, and applications of bioink material candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tofail, S. A. M., E. P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O’Donoghue, and C. Charitidis (2018) Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater. Today (Kidlington). 21: 22–37.

    Article  Google Scholar 

  2. Nachal, N., J. A. Moses, P. Karthik, and C. Anandharamakrishnan (2019) Applications of 3D printing in food processing. Food Eng. Rev. 11: 123–141.

    Article  CAS  Google Scholar 

  3. Robles Martinez, P., A. W. Basit, and S. Gaisford (2018) The history, developments and opportunities of stereolithography. pp. 55–79. In: A. W. Basit and S. Gaisford (eds.). 3D Printing of Pharmaceuticals. Springer Nature, Berlin, Germany.

    Chapter  Google Scholar 

  4. Dodziuk, H. (2016) Applications of 3D printing in healthcare. Kardiochir. Torakochirurgia Pol. 13: 283–293.

    PubMed  PubMed Central  Google Scholar 

  5. Ozbolat I. T., W. Peng, and V. Ozbolat (2016) Application areas of 3D bioprinting. Drug Discov. Today. 21: 1257–1271.

    Article  CAS  PubMed  Google Scholar 

  6. Liu, F. and X. Wang (2020) Synthetic polymers for organ 3D printing. Polymers (Basel). 12: 1765.

    Article  CAS  PubMed Central  Google Scholar 

  7. You, F., B. F. Eames, and X. Chen (2017) Application of extrusion-based hydrogel bioprinting for cartilage tissue engineering. Int. J. Mol. Sci. 18: 1597.

    Article  CAS  PubMed Central  Google Scholar 

  8. Paxton, N., W. Smolan, T. Böck, F. Melchels, J. Groll, and T. Jungst (2017) Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication. 9: 044107.

    Article  CAS  PubMed  Google Scholar 

  9. Li, X., B. Liu, B. Pei, J. Chen, D. Zhou, J. Peng, X. Zhang, W. Jia, and T. Xu (2020) Inkjet bioprinting of biomaterials. Chem. Rev. 120: 10793–10833.

    Article  CAS  PubMed  Google Scholar 

  10. Donderwinkel, I., J. C. M. van Hest, and N. R. Cameron (2017) Bio-inks for 3D bioprinting: recent advances and future prospects. Polym. Chem. 8: 4451–4471.

    Article  CAS  Google Scholar 

  11. Shahrubudin, N., T. C. Lee, and R. Ramlan (2019) An overview on 3D printing technology: technological, materials, and applications. Procedia Manuf. 35: 1286–1296.

    Article  Google Scholar 

  12. Gopinathan, J. and I. Noh (2018) Recent trends in bioinks for 3D printing. Biomater. Res. 22: 11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hospodiuk, M., M. Dey, D. Sosnoski, and I. T. Ozbolat (2017) The bioink: a comprehensive review on bioprintable materials. Biotechnol. Adv. 35: 217–239.

    Article  CAS  PubMed  Google Scholar 

  14. Gungor-Ozkerim, P. S., I. Inci, Y. S. Zhang, A. Khademhosseini, and M. R. Dokmeci (2018) Bioinks for 3D bioprinting: an overview. Biomater. Sci. 6: 915–946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Theocharis, A. D., S. S. Skandalis, C. Gialeli, and N. K. Karamanos (2016) Extracellular matrix structure. Adv. Drug Deliv. Rev. 97: 4–27.

    Article  CAS  PubMed  Google Scholar 

  16. Guvendiren, M. and J. A. Burdick (2013) Engineering synthetic hydrogel microenvironments to instruct stem cells. Curr. Opin. Biotechnol. 24: 841–846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ferreira, A. M., P. Gentile, V. Chiono, and G. Ciardelli (2012) Collagen for bone tissue regeneration. Acta Biomater. 8: 3191–3200.

    Article  CAS  PubMed  Google Scholar 

  18. Silva, T. H., J. Moreira-Silva, A. L. P. Marques, A. Domingues, Y. Bayon, and R. L. Reis (2014) Marine origin collagens and its potential applications. Mar. Drugs. 12: 5881–5901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Antoine, E. E., P. P. Vlachos, and M. N. Rylander (2014) Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport. Tissue Eng. Part B Rev. 20: 683–696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rabotyagova, O. S., P. Cebe, and D. L. Kaplan (2008) Collagen structural hierarchy and susceptibility to degradation by ultraviolet radiation. Mater. Sci. Eng. C Mater. Biol. Appl. 28: 1420–1429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fratzl, P. (2008) Collagen: structure and mechanics, an introduction. pp. 1–13. In: P. Fratzl (ed.). Collagen. Springer, Boston, MA, USA.

    Chapter  Google Scholar 

  22. Rhee, S., J. L. Puetzer, B. N. Mason, C. A. Reinhart-King, and L. J. Bonassar (2016) 3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering. ACS Biomater. Sci. Eng. 2: 1800–1805.

    Article  CAS  PubMed  Google Scholar 

  23. Marques, C. F., G. S. Diogo, S. Pina, J. M. Oliveira, T. H. Silva, and R. L. Reis (2019) Collagen-based bioinks for hard tissue engineering applications: a comprehensive review. J. Mater. Sci. Mater. Med. 30: 32.

    Article  CAS  PubMed  Google Scholar 

  24. Nocera, A. D., R. Comín, N. A. Salvatierra, and M. P. Cid (2018) Development of 3D printed fibrillar collagen scaffold for tissue engineering. Biomed. Microdevices. 20: 26.

    Article  CAS  PubMed  Google Scholar 

  25. Paten, J. A., S. M. Siadat, M. E. Susilo, E. N. Ismail, J. L. Stoner, J. P. Rothstein, and J. W. Ruberti (2016) Flow-induced crystallization of collagen: a potentially critical mechanism in early tissue formation. ACS Nano. 10: 5027–5040. (Erratum published 2017, ACS Nano. 11: 8527)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yoon, H., J.-S. Lee, H. Yim, G. Kim, and W. Chun (2016) Development of cell-laden 3D scaffolds for efficient engineered skin substitutes by collagen gelation. RSC Adv. 6: 21439–21447.

    Article  CAS  Google Scholar 

  27. Lee, H., G. H. Yang, M. Kim, J. Y. Lee, J. T. Huh, and G. H. Kim (2018) Fabrication of micro/nanoporous collagen/dECM/silk-fibroin biocomposite scaffolds using a low temperature 3D printing process for bone tissue regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 84: 140–147.

    Article  CAS  PubMed  Google Scholar 

  28. Singh, Y. P., A. Bandyopadhyay, and B. B. Mandal (2019) 3D bioprinting using cross-linker-free silk-gelatin bioink for cartilage tissue engineering. ACS Appl. Mater. Interfaces. 11: 33684–33696.

    Article  CAS  PubMed  Google Scholar 

  29. Lin, K. F., S. He, Y. Song, C. M. Wang, Y. Gao, J. Q. Li, P. Tang, Z. Wang, L. Bi, and G. X. Pei (2016) Low-temperature additive manufacturing of biomimic three-dimensional hydroxyapatite/collagen scaffolds for bone regeneration. ACS Appl. Mater. Interfaces. 8: 6905–6916.

    Article  CAS  PubMed  Google Scholar 

  30. Yang, X., Z. Lu, H. Wu, W. Li, L. Zheng, and J. Zhao (2018) Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 83: 195–201.

    Article  CAS  PubMed  Google Scholar 

  31. Achilli, M. and D. Mantovani (2010) Tailoring mechanical properties of collagen-based scaffolds for vascular tissue engineering: the effects of pH, temperature and ionic strength on gelation. Polymers (Basel). 2: 664–680.

    Article  CAS  Google Scholar 

  32. Duan, L., J. Li, C. Li, and G. Li (2013) Effects of NaCl on the rheological behavior of collagen solution. Korea Aust. Rheol. J. 25: 137–144.

    Article  Google Scholar 

  33. Lai, G., Y. Li, and G. Li (2008) Effect of concentration and temperature on the rheological behavior of collagen solution. Int. J. Biol. Macromol. 42: 285–291.

    Article  CAS  PubMed  Google Scholar 

  34. Ozbas, B., J. Kretsinger, K. Rajagopal, J. P. Schneider, and D. J. Pochan (2004) Salt-triggered peptide folding and consequent self-assembly into hydrogels with tunable modulus. Macromolecules. 37: 7331–7337.

    Article  CAS  Google Scholar 

  35. Zhang, M., Y. Chen, G. Li, and Z. Du (2010) Rheological properties of fish skin collagen solution: effects of temperature and concentration. Korea Aust. Rheol. J. 22: 119–127.

    CAS  Google Scholar 

  36. Turkoz, E., A. Perazzo, C. B. Arnold, and H. A. Stone (2018) Salt type and concentration affect the viscoelasticity of polyelectrolyte solutions. Appl. Phys. Lett. 112: 203701.

    Article  CAS  Google Scholar 

  37. Diamantides, N., L. Wang, T. Pruiksma, J. Siemiatkoski, C. Dugopolski, S. Shortkroff, S. Kennedy, and L. J. Bonassar (2017) Correlating rheological properties and printability of collagen bioinks: the effects of riboflavin photocrosslinking and pH. Biofabrication. 9: 034102.

    Article  CAS  PubMed  Google Scholar 

  38. Taghizadeh, M., M. A. Mohammadifar, E. Sadeghi, M. Rouhi, R. Mohammadi, F. Askari, A. M. Mortazavian, and M. Kariminejad (2018) Photosensitizer-induced cross-linking: a novel approach for improvement of physicochemical and structural properties of gelatin edible films. Food Res. Int. 112: 90–97.

    Article  CAS  PubMed  Google Scholar 

  39. Tirella, A., T. Liberto, and A. Ahluwalia (2012) Riboflavin and collagen: new crosslinking methods to tailor the stiffness of hydrogels. Mater. Lett. 74: 58–61.

    Article  CAS  Google Scholar 

  40. Gaudet, I. D. and D. I. Shreiber (2012) Characterization of methacrylated type-I collagen as a dynamic, photoactive hydrogel. Biointerphases. 7: 25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu, Z., J. Liu, J. Lin, L. Lu, J. Tian, L. Li, and C. Zhou (2022) Novel digital light processing printing strategy using a collagenbased bioink with prospective cross-linker procyanidins. Biomacromolecules. 23: 240–252.

    Article  CAS  PubMed  Google Scholar 

  42. Drzewiecki, K. E., J. N. Malavade, I. Ahmed, C. J. Lowe, and D. I. Shreiber (2017) A thermoreversible, photocrosslinkable collagen bio-ink for free-form fabrication of scaffolds for regenerative medicine. Technology (Singap. World Sci.) 5: 185–195.

    Google Scholar 

  43. Rinaudo, M. (2006) Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31: 603–632.

    Article  CAS  Google Scholar 

  44. Zhang, Y., D. Zhou, J. Chen, X. Zhang, X. Li, W. Zhao, and T. Xu (2019) Biomaterials based on marine resources for 3D bioprinting applications. Mar. Drugs. 17: 555.

    Article  CAS  PubMed Central  Google Scholar 

  45. Silva, T. H., A. Alves, B. M. Ferreira, J. M. Oliveira, L. L. Reys, R. J. F. Ferreira, R. A. Sousa, S. S. Silva, J. F. Mano, and R. L. Reis (2012) Materials of marine origin: a review on polymers and ceramics of biomedical interest. Int. Mater. Rev. 57: 276–306.

    Article  CAS  Google Scholar 

  46. Li, B., J. Elango, and W. Wu (2020) Recent advancement of molecular structure and biomaterial function of chitosan from marine organisms for pharmaceutical and nutraceutical application. Appl. Sci. 10: 4719.

    Article  CAS  Google Scholar 

  47. Wang, W., Q. Meng, Q. Li, J. Liu, M. Zhou, Z. **, and K. Zhao (2020) Chitosan derivatives and their application in biomedicine. Int. J. Mol. Sci. 21: 487.

    Article  CAS  PubMed Central  Google Scholar 

  48. Sacco, P., F. Brun, I. Donati, D. Porrelli, S. Paoletti, and G. Turco (2018) On the correlation between the microscopic structure and properties of phosphate-cross-linked chitosan gels. ACS Appl. Mater. Interfaces. 10: 10761–10770.

    Article  CAS  PubMed  Google Scholar 

  49. Mourya, V. K. and N. N. Inamdar (2008) Chitosan-modifications and applications: opportunities galore. React. Funct. Polym. 68: 1013–1051.

    Article  CAS  Google Scholar 

  50. Demirtaş, T. T., G. Irmak, and M. Gümüşderelioğlu (2017) A bioprintable form of chitosan hydrogel for bone tissue engineering. Biofabrication. 9: 035003.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, J., W. **a, P. Liu, Q. Cheng, T. Tahirou, W. Gu, and B. Li (2010) Chitosan modification and pharmaceutical/biomedical applications. Mar. Drugs. 8: 1962–1987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu, Q., D. Therriault, and M. C. Heuzey (2018) Processing and properties of chitosan inks for 3D printing of hydrogel microstructures. ACS Biomater. Sci. Eng. 4: 2643–2652.

    Article  CAS  PubMed  Google Scholar 

  53. Pita-López, M. L., G. Fletes-Vargas, H. Espinosa-Andrews, and R. Rodríguez-Rodríguez (2021) Physically cross-linked chitosan-based hydrogels for tissue engineering applications: a state-of-the-art review. Eur. Polym. J. 145: 110176.

    Article  CAS  Google Scholar 

  54. Wahba, M. I. (2020) Enhancement of the mechanical properties of chitosan. J. Biomater. Sci. Polym. Ed. 31: 350–375.

    Article  CAS  PubMed  Google Scholar 

  55. Hao, T., N. Wen, J. K. Cao, H. B. Wang, S. H. Lü, T. Liu, Q. X. Lin, C. M. Duan, and C. Y. Wang (2010) The support of matrix accumulation and the promotion of sheep articular cartilage defects repair in vivo by chitosan hydrogels. Osteoarthritis Cartilage. 18: 257–265.

    Article  CAS  PubMed  Google Scholar 

  56. Liu, F., W. Li, H. Liu, T. Yuan, Y. Yang, W. Zhou, Y. Hu, and Z. Yang (2021) Preparation of 3D printed chitosan/polyvinyl alcohol double network hydrogel scaffolds. Macromol. Biosci. 21: e2000398.

    Article  CAS  PubMed  Google Scholar 

  57. Wu, Y., G. Sriram, A. S. Fawzy, J. Y. Fuh, V. Rosa, T. Cao, and Y. S. Wong (2016) Fabrication and evaluation of electrohydrodynamic jet 3D printed polycaprolactone/chitosan cell carriers using human embryonic stem cell-derived fibroblasts. J. Biomater. Appl. 31: 181–192.

    Article  CAS  PubMed  Google Scholar 

  58. Boza, A. M., M. K. Wlodarczyk-Biegun, A. D. Campo, B. Vázquez-Lasa, and J. S. Román (2019) Chitosan-based inks: 3D printing and bioprinting strategies to improve shape fidelity, mechanical properties, and biocompatibility of 3D scaffolds. Biomecánica. 27: 7–16.

    Google Scholar 

  59. Pahlevanzadeh, F., R. Emadi, A. Valiani, M. Kharaziha, S. A. Poursamar, H. R. Bakhsheshi-Rad, A. F. Ismail, S. RamaKrishna, and F. Berto (2020) Three-dimensional printing constructs based on the chitosan for tissue regeneration: state of the art, develo** directions and prospect trends. Materials (Basel). 13: 2663.

    Article  CAS  PubMed Central  Google Scholar 

  60. Fischetti, T., N. Celikkin, N. Contessi Negrini, S. Farè, and W. Swieszkowski (2020) Tripolyphosphate-crosslinked chitosan/gelatin biocomposite ink for 3D printing of uniaxial scaffolds. Front. Bioeng. Biotechnol. 8: 400.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhou, L., H. Ramezani, M. Sun, M. **e, J. Nie, S. Lv, J. Cai, J. Fu, and Y. He (2020) 3D printing of high-strength chitosan hydrogel scaffolds without any organic solvents. Biomater. Sci. 8: 5020–5028.

    Article  PubMed  Google Scholar 

  62. Zhao, C. Q., W. G. Liu, Z. Y. Xu, J. G. Li, T. T. Huang, Y. J. Lu, H. G. Huang, and J. X. Lin (2020) Chitosan ducts fabricated by extrusion-based 3D printing for soft-tissue engineering. Carbohydr. Polym. 236: 116058.

    Article  CAS  PubMed  Google Scholar 

  63. Long, J., A. E. Etxeberria, A. V. Nand, C. R. Bunt, S. Ray, and A. Seyfoddin (2019) A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 104: 109873.

    Article  CAS  PubMed  Google Scholar 

  64. Zolfagharian, A., A. Kaynak, S. Y. Khoo, and A. Z. Kouzani (2018) Polyelectrolyte soft actuators: 3D printed chitosan and cast gelatin. Addit. Manuf. 5: 138–150.

    Google Scholar 

  65. Janarthanan, G., H. N. Tran, E. Cha, C. Lee, D. Das, and I. Noh (2020) 3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications. Mater. Sci. Eng. C Mater. Biol. Appl. 113: 111008.

    Article  CAS  PubMed  Google Scholar 

  66. Liu, Y., C. W. Wong, S. W. Chang, and S. H. Hsu (2021) An injectable, self-healing phenol-functionalized chitosan hydrogel with fast gelling property and visible light-crosslinking capability for 3D printing. Acta Biomater. 122: 211–219.

    Article  CAS  PubMed  Google Scholar 

  67. Suo, H., D. Zhang, J. Yin, J. Qian, Z. L. Wu, and J. Fu (2018) Interpenetrating polymer network hydrogels composed of chitosan and photocrosslinkable gelatin with enhanced mechanical properties for tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 92: 612–620.

    Article  CAS  PubMed  Google Scholar 

  68. Hidaka, M., M. Kojima, M. Nakahata, and S. Sakai (2021) Visible light-curable chitosan ink for extrusion-based and vat polymerization-based 3D bioprintings. Polymers (Basel). 13: 1382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Draget, K. I., G. Skjåk-Braek, and O. Smidsrød (1997) Alginate based new materials. Int. J. Biol. Macromol. 21: 47–55.

    Article  CAS  PubMed  Google Scholar 

  70. Mørch, Y. A., I. Donati, B. L. Strand, and G. Skjåk-Bræk (2006) Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules. 7: 1471–1480.

    Article  CAS  PubMed  Google Scholar 

  71. Jiao, W., W. Chen, Y. Mei, Y. Yun, B. Wang, Q. Zhong, H. Chen, and W. Chen (2019) Effects of molecular weight and guluronic acid/mannuronic acid ratio on the rheological behavior and stabilizing property of sodium alginate. Molecules. 24: 4374.

    Article  CAS  PubMed Central  Google Scholar 

  72. Axpe, E. and M. L. Oyen (2016) Applications of alginate-based bioinks in 3D bioprinting. Int. J. Mol. Sci. 17: 1976.

    Article  CAS  PubMed Central  Google Scholar 

  73. Andriamanantoanina, H. and M. Rinaudo (2010) Relationship between the molecular structure of alginates and their gelation in acidic conditions. Polym. Int. 59: 1531–1541.

    Article  CAS  Google Scholar 

  74. Chan, A. W., R. A. Whitney, and R. J. Neufeld (2009) Semisynthesis of a controlled stimuli-responsive alginate hydrogel. Biomacromolecules. 10: 609–616.

    Article  CAS  PubMed  Google Scholar 

  75. Barka, E., D. K. Papayannis, T. M. Kolettis, and S. Agathopoulos (2019) Optimization of Ca2+ content in alginate hydrogel injected in myocardium. J. Biomed. Mater. Res. B Appl. Biomater. 107: 223–231.

    Article  CAS  PubMed  Google Scholar 

  76. Gwon, S. H., J. Yoon, H. K. Seok, K. H. Oh, and J.-Y. Sun (2015) Gelation dynamics of ionically crosslinked alginate gel with various cations. Macromol. Res. 23: 1112–1116.

    Article  CAS  Google Scholar 

  77. Li, H., N. Li, H. Zhang, Y. Zhang, H. Suo, L. Wang, and M. Xu (2020) Three-dimensional bioprinting of perfusable hierarchical microchannels with alginate and silk fibroin double cross-linked network. 3D Print. Addit. Manuf. 7: 78–84.

    Article  Google Scholar 

  78. Zhang, B., F. Lu, K. Liao, and P. Li (2013) Effect of sodium alginate on the rheological properties of difenoconazole suspension concentrates. J. Food Agric. Environ. 11: 553–556.

    Google Scholar 

  79. Galarraga, J. H., M. Y. Kwon, and J. A. Burdick (2019) 3D bioprinting via an in situ crosslinking technique towards engineering cartilage tissue. Sci. Rep. 9: 19987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Freeman, F. E. and D. J. Kelly (2017) Tuning alginate bioink stiffness and composition for controlled growth factor delivery and to spatially direct MSC fate within bioprinted tissues. Sci. Rep. 7: 17042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kamimura, M., M. Sugawara, S. Yamamoto, K. Yamaguchi, and J. Nakanishi (2016) Dynamic control of cell adhesion on a stiffness-tunable substrate for analyzing the mechanobiology of collective cell migration. Biomater. Sci. 4: 933–937.

    Article  CAS  PubMed  Google Scholar 

  82. Lee, H. R., S. M. Jung, S. Yoon, W. H. Yoon, T. H. Park, S. Kim, H. W. Shin, D. S. Hwang, and S. Jung (2019) Immobilization of planktonic algal spores by inkjet printing. Sci. Rep. 9: 12357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fedorovich, N. E., W. Schuurman, H. M. Wijnberg, H. J. Prins, P. R. van Weeren, J. Malda, J. Alblas, and W. J. A. Dhert (2012) Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng. Part C Methods. 18: 33–44.

    Article  CAS  PubMed  Google Scholar 

  84. Tabriz, A. G., M. A. Hermida, N. R. Leslie, and W. Shu (2015) Three-dimensional bioprinting of complex cell laden alginate hydrogel structures. Biofabrication. 7: 045012.

    Article  PubMed  Google Scholar 

  85. Jung, S. M., S. Kim, J. Park, H.-R. Lee, S. Kim, H.-J. Jung, S. Jung, H. W. Shin, and D. S. Hwang (2020) Mechanical stimuli enhance the growth of Ulva fasciata (chlorophyta) spores. ACS Sustain. Chem. Eng. 8: 10073–10078.

    Article  CAS  Google Scholar 

  86. Nguyen, D., D. A. Hägg, A. Forsman, J. Ekholm, P. Nimkingratana, C. Brantsing, T. Kalogeropoulos, S. Zaunz, S. Concaro, M. Brittberg, A. Lindahl, P. Gatenholm, A. Enejder, and S. Simonsson (2017) Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink. Sci. Rep. 7: 658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jessop, Z. M., A. Al-Sabah, N. Gao, S. Kyle, B. Thomas, N. Badiei, K. Hawkins, and I. S. Whitaker (2019) Printability of pulp derived crystal, fibril and blend nanocellulose-alginate bioinks for extrusion 3D bioprinting. Biofabrication. 11: 045006.

    Article  CAS  PubMed  Google Scholar 

  88. Iskandar, L., L. Rojo, L. Di Silvio, and S. Deb (2019) The effect of chelation of sodium alginate with osteogenic ions, calcium, zinc, and strontium. J. Biomater. Appl. 34: 573–584.

    Article  CAS  PubMed  Google Scholar 

  89. Compaan, A. M., K. Christensen, and Y. Huang (2017) Inkjet bioprinting of 3D silk fibroin cellular constructs using sacrificial alginate. ACS Biomater. Sci. Eng. 3: 1519–1526.

    Article  CAS  PubMed  Google Scholar 

  90. Rockwood, D. N., R. C. Preda, T. Yücel, X. Wang, M. L. Lovett, and D. L. Kaplan (2011) Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 6: 1612–1631.

    Article  CAS  PubMed  Google Scholar 

  91. Rodriguez, M. J., J. Brown, J. Giordano, S. J. Lin, F. G. Omenetto, and D. L. Kaplan (2017) Silk based bioinks for soft tissue reconstruction using 3-dimensional (3D) printing with in vitro and in vivo assessments. Biomaterials. 117: 105–115.

    Article  CAS  PubMed  Google Scholar 

  92. Yang, Y. J., Y. Kwon, B.-H. Choi, D. Jung, J. H. Seo, K. H. Lee, and H. J. Cha (2014) Multifunctional adhesive silk fibroin with blending of RGD-bioconjugated mussel adhesive protein. Biomacromolecules. 15: 1390–1398.

    Article  CAS  PubMed  Google Scholar 

  93. Qi, Y., H. Wang, K. Wei, Y. Yang, R. Y. Zheng, I. S. Kim, and K. Q. Zhang (2017) A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures. Int. J. Mol. Sci. 18: 237.

    Article  CAS  PubMed Central  Google Scholar 

  94. Vepari, C. and D. L. Kaplan (2007) Silk as a biomaterial. Prog. Polym. Sci. 32: 991–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chawla, S., S. Midha, A. Sharma, and S. Ghosh (2018) Silk-based bioinks for 3D bioprinting. Adv. Healthc. Mater. 7: e1701204.

    Article  CAS  PubMed  Google Scholar 

  96. Kasoju, N., N. Hawkins, O. Pop-Georgievski, D. Kubies, and F. Vollrath (2016) Silk fibroin gelation via non-solvent induced phase separation. Biomater. Sci. 4: 460–473.

    Article  CAS  PubMed  Google Scholar 

  97. Das, S., F. Pati, Y. J. Choi, G. Rijal, J. H. Shim, S. W. Kim, A. R. Ray, D. W. Cho, and S. Ghosh (2015) Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater. 11: 233–246.

    Article  CAS  PubMed  Google Scholar 

  98. Partlow, B. P., C. W. Hanna, J. Rnjak-Kovacina, J. E. Moreau, M. B. Applegate, K. A. Burke, B. Marelli, A. N. Mitropoulos, F. G. Omenetto, and D. L. Kaplan (2014) Highly tunable elastomeric silk biomaterials. Adv. Funct. Mater. 24: 4615–4624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fancy, D. A. and T. Kodadek (1999) Chemistry for the analysis of protein-protein interactions: rapid and efficient cross-linking triggered by long wavelength light. Proc. Natl. Acad. Sci. U. S. A. 96: 6020–6024. (Erratum published 2000, Proc. Natl. Acad. Sci. U. S. A. 97: 1317)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Whittaker, J. L., N. R. Choudhury, N. K. Dutta, and A. Zannettino (2014) Facile and rapid ruthenium mediated photo-crosslinking of Bombyx mori silk fibroin. J. Mater. Chem. B 2: 6259–6270.

    Article  CAS  PubMed  Google Scholar 

  101. Whittaker, J. L., N. K. Dutta, C. M. Elvin, and N. R. Choudhury (2015) Fabrication of highly elastic resilin/silk fibroin based hydrogel by rapid photo-crosslinking reaction. J. Mater. Chem. B 3: 6576–6579.

    Article  CAS  PubMed  Google Scholar 

  102. Kim, C. S., Y. J. Yang, S. Y. Bahn, and H. J. Cha (2017) A bioinspired dual-crosslinked tough silk protein hydrogel as a protective biocatalytic matrix for carbon sequestration. NPG Asia Mater. 9: e391.

    Article  CAS  Google Scholar 

  103. Kim, E., J. M. Seok, S. B. Bae, S. A. Park, and W. H. Park (2021) Silk fibroin enhances cytocompatibilty and dimensional stability of alginate hydrogels for light-based three-dimensional bioprinting. Biomacromolecules. 22: 1921–1931.

    Article  CAS  PubMed  Google Scholar 

  104. Cui, X., B. G. Soliman, C. R. Alcala-Orozco, J. Li, M. A. M. Vis, M. Santos, S. G. Wise, R. Levato, J. Malda, T. B. F. Woodfield, J. Rnjak-Kovacina, and K. S. Lim (2020) Rapid photocrosslinking of silk hydrogels with high cell density and enhanced shape fidelity. Adv. Healthc. Mater. 9: e1901667. (Erratum published 2020, Adv. Healthc. Mater. 9: e2001801)

    Article  CAS  PubMed  Google Scholar 

  105. Das, S., F. Pati, S. Chameettachal, S. Pahwa, A. R. Ray, S. Dhara, and S. Ghosh (2013) Enhanced redifferentiation of chondrocytes on microperiodic silk/gelatin scaffolds: toward tailor-made tissue engineering. Biomacromolecules. 14: 311–321.

    Article  CAS  PubMed  Google Scholar 

  106. Hong, H., Y. B. Seo, D. Y. Kim, J. S. Lee, Y. J. Lee, H. Lee, O. Ajiteru, M. T. Sultan, O. J. Lee, S. H. Kim, and C. H. Park (2020) Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials. 232: 119679.

    Article  CAS  PubMed  Google Scholar 

  107. Kim, S. H., Y. K. Yeon, J. M. Lee, J. R. Chao, Y. J. Lee, Y. B. Seo, M. T. Sultan, O. J. Lee, J. S. Lee, S.-I. Yoon, I.-S. Hong, G. Khang, S. J. Lee, J. J. Yoo, and C. H. Park (2018) Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat. Commun. 9: 1620. (Erratum published 2018, Nat. Commun. 9: 2350)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Li, X., J. Zhang, N. Kawazoe, and G. Chen (2017) Fabrication of highly crosslinked gelatin hydrogel and its influence on chondrocyte proliferation and phenotype. Polymers (Basel). 9: 309.

    Article  CAS  PubMed Central  Google Scholar 

  109. Wang, X., B. Partlow, J. Liu, Z. Zheng, B. Su, Y. Wang, and D. L. Kaplan (2015) Injectable silk-polyethylene glycol hydrogels. Acta Biomater. 12: 51–61.

    Article  CAS  PubMed  Google Scholar 

  110. Giorgi, M. E., R. Agusti, and R. M. de Lederkremer (2014) Carbohydrate PEGylation, an approach to improve pharmacological potency. Beilstein J. Org. Chem. 10: 1433–1444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wei, W., J. Liu, Z. Peng, M. Liang, Y. Wang, and X. Wang (2020) Gellable silk fibroin-polyethylene sponge for hemostasis. Artif. Cells Nanomed. Biotechnol. 48: 28–36.

    Article  CAS  PubMed  Google Scholar 

  112. Veronese, F. M. and A. Mero (2008) The impact of PEGylation on biological therapies. BioDrugs. 22: 315–329.

    Article  CAS  PubMed  Google Scholar 

  113. Seo, H., S. G. Heo, H. Lee, and H. Yoon (2017) Preparation of PEG materials for constructing complex structures by stereolithographic 3D printing. RSC Adv. 7: 28684–28688.

    Article  CAS  Google Scholar 

  114. Arcaute, K., B. Mann, and R. Wicker (2010) Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. Acta Biomater. 6: 1047–1054.

    Article  CAS  PubMed  Google Scholar 

  115. Tu, X., L. Wang, J. Wei, B. Wang, Y. Tang, J. Shi, Z. Zhang, and Y. Chen (2016) 3D printed PEGDA microstructures for gelatin scaffold integration and neuron differentiation. Microelectron. Eng. 158: 30–34.

    Article  CAS  Google Scholar 

  116. Urrios, A., C. Parra-Cabrera, N. Bhattacharjee, A. M. Gonzalez-Suarez, L. G. Rigat-Brugarolas, U. Nallapatti, J. Samitier, C. A. DeForest, F. Posas, J. L. Garcia-Cordero, and A. Folch (2016) 3D-printing of transparent bio-microfluidic devices in PEG-DA. Lab. Chip. 16: 2287–2294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bhattacharjee, N., A. Urrios, S. Kang, and A. Folch (2016) The upcoming 3D-printing revolution in microfluidics. Lab. Chip. 16: 1720–1742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Palaganas, N. B., J. D. Mangadlao, A. C. C. de Leon, J. O. Palaganas, K. D. Pangilinan, Y. J. Lee, and R. C. Advincula (2017) 3D printing of photocurable cellulose nanocrystal composite for fabrication of complex architectures via stereolithography. ACS Appl. Mater. Interfaces. 9: 34314–34324.

    Article  CAS  PubMed  Google Scholar 

  119. Chiappone, A., E. Fantino, I. Roppolo, M. Lorusso, D. Manfredi, P. Fino, C. F. Pirri, and F. Calignano (2016) 3D printed PEG-based hybrid nanocomposites obtained by sol-gel technique. ACS Appl. Mater. Interfaces. 8: 5627–5633.

    Article  CAS  PubMed  Google Scholar 

  120. Malikmammadov, E., T. E. Tanir, A. Kiziltay, V. Hasirci, and N. Hasirci (2018) PCL and PCL-based materials in biomedical applications. J. Biomater. Sci. Polym. Ed. 29: 863–893.

    Article  CAS  PubMed  Google Scholar 

  121. Chen, T., T. Cai, Q. **, and J. Ji (2015) Design and fabrication of functional polycaprolactone. E-Polymers 15: 3–13.

    Article  CAS  Google Scholar 

  122. Labet, M. and W. Thielemans (2009) Synthesis of polycaprolactone: a review. Chem. Soc. Rev. 38: 3484–3504.

    Article  CAS  PubMed  Google Scholar 

  123. Herrera, N., P. Olsén, and L. A. Berglund (2020) Strongly improved mechanical properties of thermoplastic biocomposites by PCL grafting inside holocellulose wood fibers. ACS Sustain. Chem. Eng. 8: 11977–11985.

    Article  CAS  Google Scholar 

  124. BaoLin, G. and P. X. Ma (2014) Synthetic biodegradable functional polymers for tissue engineering: a brief review. Sci. China Chem. 57: 490–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Rashidi, H., J. Yang, and K. M. Shakesheff (2014) Surface engineering of synthetic polymer materials for tissue engineering and regenerative medicine applications. Biomater. Sci. 2: 1318–1331.

    Article  CAS  PubMed  Google Scholar 

  126. Temple, J. P., D. L. Hutton, B. P. Hung, P. Y. Huri, C. A. Cook, R. Kondragunta, X. Jia, and W. L. Grayson (2014) Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds. J. Biomed. Mater. Res. A. 102: 4317–4325.

    PubMed  Google Scholar 

  127. Manavitehrani, I., A. Fathi, H. Badr, S. Daly, A. N. Shirazi, and F. Dehghani (2016) Biomedical applications of biodegradable polyesters. Polymers (Basel). 8: 20.

    Article  CAS  PubMed Central  Google Scholar 

  128. Kim, S. Y. (2019) Application of the three-dimensionally printed biodegradable polycaprolactone (PCL) mesh in repair of orbital wall fractures. J. Craniomaxillofac. Surg. 47: 1065–1071.

    Article  PubMed  Google Scholar 

  129. Ladipo, O. A. and S. A. Akinso (2005) Contraceptive implants. Afr. J. Reprod. Health. 9: 16–23.

    Article  CAS  PubMed  Google Scholar 

  130. Zhang, K.-J. and Z.-B. Qiu (2017) Enhanced crystallization rate of biodegradable poly(ε-caprolactone) by cyanuric acid as an efficient nucleating agent. Chin. J. Polym. Sci. 35: 1517–1523.

    Article  CAS  Google Scholar 

  131. Jiao, Z., B. Luo, S. **ang, H. Ma, Y. Yu, and W. Yang (2019) 3D printing of HA / PCL composite tissue engineering scaffolds. Adv. Ind. Eng. Polym. Res. 2: 196–202.

    Google Scholar 

  132. Dávila, J. L., M. S. Freitas, P. Inforçatti Neto, Z. C. Silveira, J. V. L. Silva, and M. A. d’Ávila (2016) Fabrication of PCL/β-TCP scaffolds by 3D mini-screw extrusion printing. J. Appl. Polym. Sci. 133: 43031.

    Article  CAS  Google Scholar 

  133. Fathi, A., F. Kermani, A. Behnamghader, S. Banijamali, M. Mozafari, F. Baino, and S. Kargozar (2020) Three-dimensionally printed polycaprolactone/multicomponent bioactive glass scaffolds for potential application in bone tissue engineering. Biomed. Glasses. 6: 57–69.

    Article  Google Scholar 

  134. Liu, D., W. Nie, D. Li, W. Wang, L. Zheng, J. Zhang, J. Zhang, C. Peng, X. Mo, and C. He (2019) 3D printed PCL/SrHA scaffold for enhanced bone regeneration. Chem. Eng. J. 362: 269–279.

    Article  CAS  Google Scholar 

  135. Yang, X., Y. Wang, Y. Zhou, J. Chen, and Q. Wan (2021) The application of polycaprolactone in three-dimensional printing scaffolds for bone tissue engineering. Polymers (Basel). 13: 2754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Han, J., S. Salmieri, C. Le Tien, and M. Lacroix (2010) Improvement of water barrier property of paperboard by coating application with biodegradable polymers. J. Agric. Food Chem. 58: 3125–3131.

    Article  CAS  PubMed  Google Scholar 

  137. Sudarmadji, N., J. Y. Tan, K. F. Leong, C. K. Chua, and Y. T. Loh (2011) Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds. Acta Biomater. 7: 530–537.

    Article  CAS  PubMed  Google Scholar 

  138. Elomaa, L., A. Kokkari, T. Närhi, and J. V. Seppälä (2013) Porous 3D modeled scaffolds of bioactive glass and photocrosslinkable poly(ε-caprolactone) by stereolithography. Compos. Sci. Technol. 74: 99–106.

    Article  CAS  Google Scholar 

  139. Zein, I., D. W. Hutmacher, K. C. Tan, and S. H. Teoh (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials. 23: 1169–1185.

    Article  CAS  PubMed  Google Scholar 

  140. Lee, J. Y., J. Y. Park, I. P. Hong, S. H. Jeon, J. K. Cha, J. W. Paik, and S. H. Choi (2021) 3D-printed barrier membrane using mixture of polycaprolactone and beta-tricalcium phosphate for regeneration of rabbit calvarial defects. Materials (Basel). 14: 3280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sun, L., S. T. Parker, D. Syoji, X. Wang, J. A. Lewis, and D. L. Kaplan (2012) Direct-write assembly of 3D silk/hydroxyapatite scaffolds for bone co-cultures. Adv. Healthc. Mater. 1: 729–735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Bose, S., S. Vahabzadeh, and A. Bandyopadhyay (2013) Bone tissue engineering using 3D printing. Mater. Today (Kidlington). 16: 496–504.

    Article  CAS  Google Scholar 

  143. Kim, Y. B., J. Y. Lim, G. H. Yang, J.-H. Seo, H.-S. Ryu, and G. H. Kim (2019) 3D-printed PCL/bioglass (BGS-7) composite scaffolds with high toughness and cell-responses for bone tissue regeneration. J. Ind. Eng. Chem. 79: 163–171.

    Article  CAS  Google Scholar 

  144. Midha, S., S. Kumar, A. Sharma, K. Kaur, X. Shi, P. Naruphontjirakul, J. R. Jones, and S. Ghosh (2018) Silk fibroin-bioactive glass based advanced biomaterials: towards patient-specific bone grafts. Biomed. Mater. 13: 055012.

    Article  PubMed  Google Scholar 

  145. Subramaniam, S. R., M. Samykano, S. K. Selvamani, W. K. Ngui, K. Kadirgama, K. Sudhakar, and M. S. Idris (2019) 3D printing: overview of PLA progress. AIP Conf. Proc. 2059: 020015.

    Article  CAS  Google Scholar 

  146. Cheng, Y., S. Deng, P. Chen, and R. Ruan (2009) Polylactic acid (PLA) synthesis and modifications: a review. Front. Chem. China. 4: 259–264.

    Article  Google Scholar 

  147. Santoro, M., S. R. Shah, J. L. Walker, and A. G. Mikos (2016) Poly(lactic acid) nanofibrous scaffolds for tissue engineering. Adv. Drug Deliv. Rev. 107: 206–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Maróti, P., B. Kocsis, A. Ferencz, M. Nyitrai, and D. Lőrinczy (2020) Differential thermal analysis of the antibacterial effect of PLA-based materials planned for 3D printing. J. Therm. Anal. Calorim. 139: 367–374.

    Article  CAS  Google Scholar 

  149. Donate, R., M. Monzón, and M. E. Alemán-Domínguez (2020) Additive manufacturing of PLA-based scaffolds intended for bone regeneration and strategies to improve their biological properties. E-Polymers. 20: 571–599.

    Article  CAS  Google Scholar 

  150. Bigg, D. M. (2005) Polylactide copolymers: effect of copolymer ratio and end cap** on their properties. Adv. Polym. Technol. 24: 69–82.

    Article  CAS  Google Scholar 

  151. Thavornyutikarn, B., N. Chantarapanich, K. Sitthiseripratip, G. A. Thouas, and Q. Chen (2014) Bone tissue engineering scaffolding: computer-aided scaffolding techniques. Prog. Biomater. 3: 61–102.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Chiulan, I., A. N. Frone, C. Brandabur, and D. M. Panaitescu (2017) Recent advances in 3D printing of aliphatic polyesters. Bioengineering (Basel). 5: 2.

    Article  CAS  PubMed Central  Google Scholar 

  153. Mohammadizadeh, M., H. Lu, I. Fidan, K. Tantawi, A. Gupta, S. Hasanov, Z. Zhang, F. Alifui-Segbaya, and A. Rennie (2020) Mechanical and thermal analyses of metal-PLA components fabricated by metal material extrusion. Inventions (Basel). 5: 44.

    Article  Google Scholar 

  154. Tao, Z., H.-J. Ahn, C. Lian, K.-H. Lee, and C.-H. Lee (2017) Design and optimization of prosthetic foot by using polylactic acid 3D printing. J. Mech. Sci. Technol. 31: 2393–2398.

    Article  Google Scholar 

  155. Wang, P., H. M. Yin, X. Li, W. Liu, Y. X. Chu, Y. Wang, Y. Wang, J. Z. Xu, Z. M. Li, and J. H. Li (2021) Simultaneously constructing nanotopographical and chemical cues in 3D-printed polylactic acid scaffolds to promote bone regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 118: 111457.

    Article  CAS  PubMed  Google Scholar 

  156. Chen, Q., J. D. Mangadlao, J. Wallat, A. D. Leon, J. K. Pokorski, and R. C. Advincula (2017) 3D printing biocompatible polyurethane/poly(lactic acid)/graphene oxide nanocomposites: anisotropic properties. ACS Appl. Mater. Interfaces. 9: 4015–4023.

    Article  CAS  PubMed  Google Scholar 

  157. Murphy, C. A. and M. N. Collins (2018) Microcrystalline cellulose reinforced polylactic acid biocomposite filaments for 3D printing. Polym. Compos. 39: 1311–1320.

    Article  CAS  Google Scholar 

  158. Rojas-Martínez, L. E., C. G. Flores-Hernandez, L. M. López-Marín, A. L. Martinez-Hernandez, S. B. Thorat, C. D. Reyes Vasquez, A. E. D. Rio-Castillo, and C. Velasco-Santos (2020) 3D printing of PLA composites scaffolds reinforced with keratin and chitosan: effect of geometry and structure. Eur. Polym. J. 141: 110088.

    Article  CAS  Google Scholar 

  159. Domínguez-Robles, J., N. K. Martin, M. L. Fong, S. A. Stewart, N. J. Irwin, M. I. Rial-Hermida, R. F. Donnelly, and E. Larrañeta (2019) Antioxidant PLA composites containing lignin for 3D printing applications: a potential material for healthcare applications. Pharmaceutics. 11: 165.

    Article  CAS  PubMed Central  Google Scholar 

  160. Mondal, S., T. P. Nguyen, V. H. Pham, G. Hoang, P. Manivasagan, M. H. Kim, S. Y. Nam, and J. Oh (2020) Hydroxyapatite nano bioceramics optimized 3D printed poly lactic acid scaffold for bone tissue engineering application. Ceram. Int. 46: 3443–3455.

    Article  CAS  Google Scholar 

  161. Carvalho Fernandes, D. C., D. Lynch, and V. Berry (2020) 3D-printed graphene/polymer structures for electron-tunneling based devices. Sci. Rep. 10: 11373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Cai, Z., Y. Wan, M. L. Becker, Y. Z. Long, and D. Dean (2019) Poly(propylene fumarate)-based materials: synthesis, functionalization, properties, device fabrication and biomedical applications. Biomaterials. 208: 45–71.

    Article  CAS  PubMed  Google Scholar 

  163. Kasper, F. K., K. Tanahashi, J. P. Fisher, and A. G. Mikos (2009) Synthesis of poly(propylene fumarate). Nat. Protoc. 4: 518–525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Dilla, R. A., C. M. M. Motta, S. R. Snyder, J. A. Wilson, C. Wesdemiotis, and M. L. Becker (2018) Synthesis and 3D printing of PEG-poly(propylene fumarate) diblock and triblock copolymer hydrogels. ACS Macro Lett. 7: 1254–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Wang, S., L. Lu, and M. J. Yaszemski (2006) Bone-tissue-engineering material poly(propylene fumarate): correlation between molecular weight, chain dimensions, and physical properties. Biomacromolecules. 7: 1976–1982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Cooke, M. N., J. P. Fisher, D. Dean, C. Rimnac, and A. G. Mikos (2003) Use of stereolithography to manufacture criticalsized 3D biodegradable scaffolds for bone ingrowth. J. Biomed. Mater. Res. B Appl. Biomater. 64: 65–69.

    Article  CAS  PubMed  Google Scholar 

  167. Guerra, A. J., J. Lammel-Lindemann, A. Katko, A. Kleinfehn, C. A. Rodriguez, L. H. Catalani, M. L. Becker, J. Ciurana, and D. Dean (2019) Optimization of photocrosslinkable resin components and 3D printing process parameters. Acta Biomater. 97: 154–161.

    Article  CAS  PubMed  Google Scholar 

  168. Peter, S. J., P. Kim, A. W. Yasko, M. J. Yaszemski, and A. G. Mikos (1999) Crosslinking characteristics of an injectable poly(propylene fumarate)/beta-tricalcium phosphate paste and mechanical properties of the crosslinked composite for use as a biodegradable bone cement. J. Biomed. Mater. Res. 44: 314–321.

    Article  CAS  PubMed  Google Scholar 

  169. Vasile, E., A. M. Pandele, C. Andronescu, A. Selaru, S. Dinescu, M. Costache, A. Hanganu, M. D. Raicopol, and M. Teodorescu (2019) Hema-functionalized graphene oxide: a versatile nanofiller for poly(propylene fumarate)-based hybrid materials. Sci. Rep. 9: 18685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Fer, G. L. and M. L. Becker (2020) 4D Printing of resorbable complex shape-memory poly(propylene fumarate) star scaffolds. ACS Appl. Mater. Interfaces. 12: 22444–22452.

    Article  CAS  PubMed  Google Scholar 

  171. Parry, J. A., M. G. L. Olthof, K. L. Shogren, M. Dadsetan, A. V. Wijnen, M. Yaszemski, and S. Kakar (2017) Three-dimension-printed porous poly(propylene fumarate) scaffolds with delayed rhBMP-2 release for anterior cruciate ligament graft fixation. Tissue Eng. Part A. 23: 359–365.

    Article  CAS  PubMed  Google Scholar 

  172. Walker, J. M., E. Bodamer, O. Krebs, Y. Luo, A. Kleinfehn, M. L. Becker, and D. Dean (2017) Effect of chemical and physical properties on the in vitro degradation of 3D printed high resolution poly(propylene fumarate) scaffolds. Biomacromolecules. 18: 1419–1425.

    Article  CAS  PubMed  Google Scholar 

  173. Alge, D. L., J. Bennett, T. Treasure, S. Voytik-Harbin, W. S. Goebel, and T.-M. G. Chu (2012) Poly(propylene fumarate) reinforced dicalcium phosphate dihydrate cement composites for bone tissue engineering. J. Biomed. Mater. Res. A. 100: 1792–1802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Lu, Y., S. N. Mantha, D. C. Crowder, S. Chinchilla, K. N. Shah, Y. H. Yun, R. B. Wicker, and J. W. Choi (2015) Microstereolithography and characterization of poly(propylene fumarate)-based drug-loaded microneedle arrays. Biofabrication 7: 045001.

    Article  PubMed  Google Scholar 

  175. Ashammakhi, N., S. Ahadian, C. Xu, H. Montazerian, H. Ko, R. Nasiri, N. Barros, and A. Khademhosseini (2019) Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater. Today Bio. 1: 100008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Stanton, M. M., J. Samitier, and S. Sánchez (2015) Bioprinting of 3D hydrogels. Lab. Chip. 15: 3111–3115.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support by the basic science research program funded by the Ministry of Science and ICT (NRF-2020R1C1C1006737), development of technology for biomaterialization of marine fisheries byproducts of Korea Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (KIMST-20220128), and Inha University Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Jung Yang.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, S.H., Choi, H.N. & Yang, Y.J. Natural/Synthetic Polymer Materials for Bioink Development. Biotechnol Bioproc E 27, 482–493 (2022). https://doi.org/10.1007/s12257-021-0418-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-021-0418-1

Keywords

Navigation