Log in

Antibacterial Activity of Prenylated Flavonoids Isolated from Hop against Fish Pathogens Streptococcus iniae and Vibrio vulnificus

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Reducing fish pathogenic bacteria outbreak is important as it results in economic losses in aquaculture. Antibiotics are an inevitable tool to control the pathogenic bacteria outbreak. However, the authorities are taking more regulations to prevent the emergence of drug-resistant strain development. Alternative materials to be employed for the purpose are needed from natural sources. In this research, we explored the antibacterial activity of natural products derived from hop against fish pathogenic strains Streptococcus iniae and Vibrio vulnificus. Antimicrobial activities of nine separates from hops were tested against S. iniae and V. vulnificus and identified. Xanthohumol (1) showed strongest antibacterial property against S. iniae. In addition, desmethylxanthohumol (4) and 8-prenylnaringenin (5) showed antibacterial against both of the tested pathogen strains. Antibacterial compounds were all prenylated flavonoids, and these might be used as index components for development of feed additives for fish in aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben Hamed, S., M. J. Tavares Ranzani-Paiva, L. Tachibana, D. de Carla Dias, C. M. Ishikawa, and M. A. Esteban (2018) Fish pathogen bacteria: adhesion, parameters influencing virulence and interaction with host cells. Fish Shellfish Immunol. 80: 550–562.

    Article  CAS  PubMed  Google Scholar 

  2. Terzi, E., O. Corum, S. Bilen, O. N. Kenanoglu, O. Atik, and K. Uney (2020) Pharmacokinetics of danofloxacin in rainbow trout after different routes of administration. Aquaculture. 520: 734984.

    Article  CAS  Google Scholar 

  3. Alexander, C. P., C. J. W. Kirubakaran, and R. D. Michael (2010) Water soluble fraction of Tinospora cordifolia leaves enhanced the non-specific immune mechanisms and disease resistance in Oreochromis mossambicus. Fish Shellfish Immunol. 29: 765–772.

    Article  PubMed  Google Scholar 

  4. Gabriel, N. N., J. Qiang, J. He, X. Y. Ma, M. D. Kpundeh, and P. Xu (2015) Dietary Aloe vera supplementation on growth performance, some haemato-biochemical parameters and disease resistance against Streptococcus iniae in tilapia (GIFT). Fish Shellfish Immunol. 44: 504–514.

    Article  CAS  PubMed  Google Scholar 

  5. Caruso, D., A. M. Lusiastuti, Taukhid, J. Slembrouck, O. Komarudin, and M. Legendre (2013) Traditional pharmacopeia in small scale freshwater fish farms in West Java, Indonesia: an ethnoveterinary approach. Aquaculture. 416–417: 334–345.

    Article  Google Scholar 

  6. Acar, Ü., O. S. Kesbiç, S. Yılmaz, N. Gültepe, and A. Türker (2015) Evaluation of the effects of essential oil extracted from sweet orange peel (Citrus sinensis) on growth rate of tilapia (Oreochromis mossambicus) and possible disease resistance against Streptococcus iniae. Aquaculture. 437: 282–286.

    Article  CAS  Google Scholar 

  7. Van Hai, N. (2015) The use of medicinal plants as immunostimulants in aquaculture: a review. Aquaculture. 446: 88–96.

    Article  CAS  Google Scholar 

  8. U-taynapun, K., N. Mueangkan, and N. Chirapongsatonkul (2018) Efficacy of herbal extracts to control multi-antibiotics resistant (MAR) Aeromonas veronii isolated from motile Aeromonas septicemia (MAS)-exhibiting Nile tilapia (Oreochromis niloticus). Int. J. Agric. Technol. 14: 2191–2206.

    CAS  Google Scholar 

  9. Simpson, M. G. (2010) Plant Systematics. 2nd ed. Academic Press, Amsterdam, Netherlands.

    Google Scholar 

  10. Bocquet, L., S. Sahpaz, and C. Rivière (2018) An overview of the antimicrobial properties of hop. pp. 31–54. In: J.-M. Mérillon and C. Riviere (eds.). Natural Antimicrobial Agents. Springer, Cham, Switzerland.

    Chapter  Google Scholar 

  11. Alworth, J. (2015) The Beer Bible. Workman Publishing, New York, NY, USA.

    Google Scholar 

  12. Faivre, C., K. Ghedira, P. Goetz, R. Lejeune, and H. Staub (2007) Humulus lupulus L. Phytotherapie (Paris). 5: 86–89.

    CAS  Google Scholar 

  13. Kramer, B., J. Thielmann, A. Hickisch, P. Muranyi, J. Wunderlich, and C. Hauser (2015) Antimicrobial activity of hop extracts against foodborne pathogens for meat applications. J. Appl. Microbiol. 118: 648–657.

    Article  CAS  PubMed  Google Scholar 

  14. Bhattacharya, S., S. Virani, M. Zavro, and G. J. Haas (2003) Inhibition of Streptococcus mutans and other oral streptococci by hop (Humulus lupulus L.) constituents. Econ. Bot. 57: 118–125.

    Article  Google Scholar 

  15. Yamaguchi, N., K. Satoh-Yamaguchi, and M. Ono (2009) In vitro evaluation of antibacterial, anticollagenase, and antioxidant activities of hop components (Humulus lupulus) addressing acne vulgaris. Phytomedicine. 16: 369–376.

    Article  CAS  PubMed  Google Scholar 

  16. Zanoli, P. and M. Zavatti (2008) Pharmacognostic and pharmacological profile of Humulus lupulus L. J. Ethnopharmacol. 116: 383–396.

    Article  CAS  PubMed  Google Scholar 

  17. Pier, G. B. and S. H. Madin (1976) Streptococcus iniae sp. nov., a beta-hemolytic streptococcus isolated from an Amazon freshwater dolphin, Inia geoffrensis. Int. J. Syst. Evol. Microbiol. 26: 545–553.

    Google Scholar 

  18. Pier, G. B., S. H. Madin, and S. Al-Nakeeb (1978) Isolation and characterization of a second isolate of Streptococcus iniae. Int. J. Syst. Evol. Microbiol. 28: 311–314.

    Google Scholar 

  19. Robinson, J. A. and F. P. Meyer (1966) Streptococcal fish pathogen. J. Bacteriol. 92: 512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kitao, T., T. Aoki, and R. Sakoh (1981) Epizootic caused by β-haemoltytic Streptococcus species in cultured freshwater fish. Fish Pathol. 15: 301–307.

    Article  Google Scholar 

  21. Kaige, N., T. Mjyazaki, and S. S. Kubota (1984) The pathogen and the histopathology of vertebral deformity in cultured yellowtail. Fish Pathol. 19: 173–179.

    Article  Google Scholar 

  22. Eldar, A., Y. Bejerano, and H. Bercovier (1994) Streptococcus shiloi and Streptococcus difficile: two new streptococcal species causing a meningoencephalitis in fish. Curr. Microbiol. 28: 139–143.

    Article  Google Scholar 

  23. Perera, R. P., S. K. Johnson, M. D. Collins, and D. H. Lewis (1994) Streptococcus iniae associated with mortality of Tilapia nilotica × T. aurea hybrids. J. Aquat. Anim. Health. 6: 335–340.

    Article  Google Scholar 

  24. Eldar, A., Y. Bejerano, A. Livoff, A. Horovitcz, and H. Bercovier (1995) Experimental streptococcal meningo-encephalitis in cultured fish. Vet. Microbiol. 43: 33–40.

    Article  CAS  PubMed  Google Scholar 

  25. Feldhusen, F. (2000) The role of seafood in bacterial foodborne diseases. Microbes Infect. 2: 1651–1660.

    Article  CAS  PubMed  Google Scholar 

  26. Tamplin, M., G. E. Rodrick, N. J. Blake, and T. Cuba (1982) Isolation and characterization of Vibrio vulnificus from two Florida estuaries. Appl. Environ. Microbiol. 44: 1466–1470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. O’Neill, K. R., S. H. Jones, and D. J. Grimes (1992) Seasonal incidence of Vibrio vulnificus in the Great Bay estuary of New Hampshire and Maine. Appl. Environ. Microbiol. 58: 3257–3262.

    Article  PubMed  PubMed Central  Google Scholar 

  28. DePaola, A., G. M. Capers, and D. Alexander (1994) Densities of Vibrio vulnificus in the intestines of fish from the U.S. Gulf Coast. Appl. Environ. Microbiol. 60: 984–988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wright, A. C., R. T. Hill, J. A. Johnson, M.-C. Roghman, R. R. Colwell, and J. G. Morris Jr. (1996) Distribution of Vibrio vulnificus in the Chesapeake Bay. Appl. Environ. Microbiol. 62: 717–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hai, L., J. L. Larsen, I. Dalsgaard, and A. Dalsgaard (1998) Occurrence of Vibrio vulnificus biotypes in Danish marine environments. Appl. Environ. Microbiol. 64: 7–13.

    Article  Google Scholar 

  31. Bisharat, N., V. Agmon, R. Finkelstein, R. Raz, G. Ben-Dror, L. Lerner, S. Soboh, R. Colodner, D. N. Cameron, D. L. Wykstra, D. L. Swerdlow, and J. J. Farmer 3rd (1999) Clinical, epidemiological, and microbiological features of Vibrio vulnificus biogroup 3 causing outbreaks of wound infection and bacteraemia in Israel. Lancet. 354: 1421–1424.

    Article  CAS  PubMed  Google Scholar 

  32. do Nascimento, S. M. M., R. H. dos Fernandes Vieira, G. N. D. Theophilo, D. Dos Prazeres Rodrigues, and G. H. F. Vieira (2001) Vibrio vulnificus as a health hazard for shrimp consumers. Rev. Inst. Med. Trop. Sao Paulo. 43: 263–266.

    Article  CAS  PubMed  Google Scholar 

  33. Baffone, W., R. Tarsi, L. Pane, R. Campana, B. Repetto, G. L. Mariottini, and C. Pruzzo (2006) Detection of free-living and plankton-bound vibrios in coastal waters of the Adriatic Sea (Italy) and study of their pathogenicity-associated properties. Environ. Microbiol. 8: 1299–1305.

    Article  CAS  PubMed  Google Scholar 

  34. Oliver, J. D. (2006) Vibrio vulnificus. pp. 253–276. In: S. Belkin and R. R. Colwell (eds.). Oceans and Health: Pathogens in the Marine Environment. Springer, Boston, MA, USA.

    Google Scholar 

  35. Mahmud, Z. H., S. B. Neogi, A. Kassu, B. T. Mai Huong, I. K. Jahid, M. S. Islam, and F. Ota (2008) Occurrence, seasonality and genetic diversity of Vibrio vulnificus in coastal seaweeds and water along the Kii Channel, Japan. FEMS Microbiol. Ecol. 64: 209–218.

    Article  CAS  PubMed  Google Scholar 

  36. Wiegand, I., K. Hilpert, and R. E. Hancock (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3: 163–175.

    Article  CAS  PubMed  Google Scholar 

  37. Chen, Q.-H., M.-L. Fu, M.-M. Chen, J. Liu, X.-J. Liu, G.-Q. He, and S.-C. Pu (2012) Preparative isolation and purification of xanthohumol from hops (Humulus lupulus L.) by high-speed counter-current chromatography. Food Chem. 132: 619–623.

    Article  CAS  PubMed  Google Scholar 

  38. Stevens, J. F., A. W. Taylor, G. B. Nickerson, M. Ivancic, J. Henning, A. Haunold, and M. L. Deinzer (2000) Prenylflavonoid variation in Humulus lupulus: distribution and taxonomic significance of xanthogalenol and 4′-O-methylxanthohumol. Phytochemistry. 53: 759–775.

    Article  CAS  PubMed  Google Scholar 

  39. Sukito, A. and S. Tachibana (2014) Isolation of hyperoside and isoquercitrin from Camellia sasanqua as antioxidant agents. Pak. J. Biol. Sci. 17: 999–1006.

    Article  CAS  PubMed  Google Scholar 

  40. Wei, Y., Q. **e, D. Fisher, and I. A. Sutherland (2011) Separation of patuletin-3-O-glucoside, astragalin, quercetin, kaempferol and isorhamnetin from Flaveria bidentis (L.) Kuntze by elution-pump-out high-performance counter-current chromatography. J. Chromatogr. A. 1218: 6206–6211.

    Article  CAS  PubMed  Google Scholar 

  41. Chen, S.-N., D. C. Lankin, L. R. Chadwick, B. U. Jaki, and G. F. Pauli (2009) Dynamic residual complexity of natural products by qHNMR: solution stability of desmethylxanthohumol. Planta Med. 75: 757–762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim, H. J., S.-H. Kim, B. Y. Kang, and I.-S. Lee (2008) Microbial metabolites of 8-prenylnaringenin, an estrogenic prenylflavanone. Arch. Pharm. Res. 31: 1241–1246.

    Article  CAS  PubMed  Google Scholar 

  43. Stevens, J. F., M. Ivancic, V. L. Hsu, and M. L. Deinzer (1997) Prenylflavonoids from Humulus lupulus. Phytochemistry 44: 1575–1585.

    Article  CAS  Google Scholar 

  44. Zhao, F., Y. Watanabe, H. Nozawa, A. Daikonnya, K. Kondo, and S. Kitanaka (2005) Prenylflavonoids and phloroglucinol derivatives from hops (Humulus lupulus). J. Nat. Prod. 68: 43–49.

    Article  CAS  PubMed  Google Scholar 

  45. Intelmann, D., G. Haseleu, and T. Hofmann (2009) LC-MS/MS quantitation of hop-derived bitter compounds in beer using the ECHO technique. J. Agric. Food Chem. 57: 1172–1182.

    Article  CAS  PubMed  Google Scholar 

  46. Moir, M. (2000) Hops—a millennium review. J. Am. Soc. Brew. Chem. 58: 131–146.

    CAS  Google Scholar 

  47. Bocquet, L., S. Sahpaz, J. L. Hilbert, C. Rambaud, and C. Rivière (2018) Humulus lupulus L., a very popular beer ingredient and medicinal plant: overview of its phytochemistry, its bioactivity, and its biotechnology. Phytochem. Rev. 17: 1047–1090.

    Article  CAS  Google Scholar 

  48. Simpson, W. J. and A. R. Smith (1992) Factors affecting antibacterial activity of hop compounds and their derivatives. J. Appl. Bacteriol. 72: 327–334.

    Article  CAS  PubMed  Google Scholar 

  49. Ohsugi, M., P. Basnet, S. Kadota, E. Ishii, T. Tamura, Y. Okumura, and T. Namba (1997) Antibacterial activity of traditional medicines and an active constituent lupulone from Humulus lupulus against Helicobacter pylori. J. Tradit. Med. 14: 186–191.

    CAS  Google Scholar 

  50. Verzele, M. and D. De Keukeleire (2013) Chemistry and Analysis of Hop and Beer Bitter Acids. Elsevier, Amsterdam, Netherlands.

    Google Scholar 

  51. Stevens, J. F., A. W. Taylor, and M. L. Deinzer (1999) Quantitative analysis of xanthohumol and related prenylflavonoids in hops and beer by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A. 832: 97–107.

    Article  CAS  PubMed  Google Scholar 

  52. Gerhäuser, C. (2005) Broad spectrum anti-infective potential of xanthohumol from hop (Humulus lupulus L.) in comparison with activities of other hop constituents and xanthohumol metabolites. Mol. Nutr. Food Res. 49: 827–831.

    Article  PubMed  CAS  Google Scholar 

  53. Nagel, J., L. K. Culley, Y. Lu, E. Liu, P. D. Matthews, J. F. Stevens, and J. E. Page (2008) EST analysis of hop glandular trichomes identifies an O-methyltransferase that catalyzes the biosynthesis of xanthohumol. Plant Cell. 20: 186–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen, X., E. Mukwaya, M.-S. Wong, and Y. Zhang (2014) A systematic review on biological activities of prenylated flavonoids. Pharm. Biol. 52: 655–660.

    Article  CAS  PubMed  Google Scholar 

  55. Hatano, T., Y. Shintani, Y. Aga, S. Shiota, T. Tsuchiya, and T. Yoshida (2000) Phenolic constituents of licorice. VIII. Structures of glicophenone and glicoisoflavanone, and effects of licorice phenolics on methicillin-resistant Staphylococcus aureus. Chem. Pharm. Bull. (Tokyo). 48: 1286–1292.

    Article  CAS  PubMed  Google Scholar 

  56. De Smet, P. A. G. M., K. Keller, R. Hänsel, and R. F. Chandler (1992) Adverse Effects of Herbal Drugs. Springer, Berlin, Germany.

    Book  Google Scholar 

Download references

Acknowledgements

This research was supported by the grants from the National Research Foundation of Korea (NRF-2019R1I1A1A01044151 & NRF-2021R1F1A1061707) and a project to train professional personnel in biological materials by the Ministry of Environment

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Inho Yang or Dongyup Hahn.

Ethics declarations

The authors declare they have no conflict of interest. Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M., Lee, J., Kim, J.M. et al. Antibacterial Activity of Prenylated Flavonoids Isolated from Hop against Fish Pathogens Streptococcus iniae and Vibrio vulnificus. Biotechnol Bioproc E 27, 361–369 (2022). https://doi.org/10.1007/s12257-021-0247-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-021-0247-2

Keywords

Navigation