Log in

Higher-level production of ascomycin (FK520) by Streptomyces hygroscopicus var. ascomyceticus irradiated by femtosecond laser

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Femtosecond laser irradiation technology was employed for the first time to improve the ascomycin (FK520) yield of Streptomyces hygroscopicus var. ascomyceticus NT2-11, which is an N-methyl-N-nitro-N-nitrosoguanidine (NTG)-induced strain derived from S. hygroscopicus (ATCC14891). The mutant FS35 with high and stable FK520 production capacity was then obtained in the optimal irradiation conditions (25 mW for 6 min) by the Titanium sapphire laser system (810 nm, 76 MHz, 150 fs). The FK520 production capacity of FS35 was 45% higher than that of the parental strain NT2-11. Moreover, under the optimal fermentation conditions, FK520 fermentation titer of FS35 reached 300 mg/L and the intrinsic kinetics of FS35 and NT2-11 were investigated comparatively in 3 phases. The mathematical models provided a good description of FK520 fermentation process for both strains and valuable information for optimizing operation and pilotplant enlargement research. The comparative studies on parameters of the models confirmed the advantages in production and the decrease of substrate inhibition through femtosecond laser irradiation. Therefore, femtosecond laser irradiation provides a promising way to enhance the production of FK520 in S. hygroscopicus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arai, T., Y. Kouama, T. Suenaga, and H. Honda (1962) Ascomycin, an antifungal antibiotic. J. Antibiot. 15: 231–232.

    CAS  Google Scholar 

  2. Dumont, F. J., M. J. Staruch, S. L. Koprak, J. J. Siekierka, C. S. Lin, R. Harrison, T. Sewell, V. M. Kindt, T. R. Beattie, and M. Wyvratt (1992) The immunosuppressive and toxic effects of FK-506 are mechanistically related: Pharmacology of a novel antagonist of FK-506 and rapamycin. J. Exp. Med. 176: 751–760.

    Article  CAS  Google Scholar 

  3. Sierra-Paredes, G. and G. Sierra-Marcuõ (2008) Ascomycin and FK506: Pharmacology and therapeutic potential as anticonvulsants and neuroprotectants. CNS Neurosci. Ther. 14: 36–46.

    Article  CAS  Google Scholar 

  4. Monaghan, P., M. Fardis, W. P. Revill, and A. Bell (2005) Antimalarial effects of acrolactones related to FK520 (Ascomycin) are independent of the immunosuppressive properties. J. Infect. Dis. 191: 1342–1349.

    Article  CAS  Google Scholar 

  5. Revill, W. P., J. Voda, C. R. Reeves, L. Chung, A. Schirmer, G. Ashley, J. R. Carney, M. Fardis, C. W. Carreras, Y. Zhou, L. Feng, E. Tucker, D. Robinson, and B. G. Gold (2002) Genetically engineered analogs of ascomycin for nerve regeneration. J. Pharmacol. Exp. Ther. 302: 1278–1285.

    Article  CAS  Google Scholar 

  6. Ji, X. J., H. Huang, and P. K. Ouyang (2011) Microbial 2, 3-butanediol production: A state-of-the-art review. Biotechnol. Adv. 29: 351–364.

    Article  CAS  Google Scholar 

  7. Regentin, R., L. Cadapan, S. Ou, S. Zavala, and P. Licari (2002) Production of a novel FK520 analog in Streptomyces hygroscopicus: Improving titer while minimizing impurities. J. Ind. Microbiol. Biotechnol. 28: 12–16.

    CAS  Google Scholar 

  8. Demain, A. L. and J. L. Adrio (2008) Strain improvement for production of pharmaceuticals and other microbial metabolites by fermentation. Prog. Drug Res. 65: 251–289.

    Article  CAS  Google Scholar 

  9. Wu, K., L. Chung, W. P. Revill, L. Katz, and C. D. Reeves (2000) The FK520 gene cluster of Streptomyces hygroscopicus var. ascomyceticus (ATCC 14891) contains genes for biosynthesis of unusual polyketide extender units. Gene. 251: 81–90.

    Article  CAS  Google Scholar 

  10. Vogel, A., J. Noack, G. Hüttmann, and G. Paltauf (2005) Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B: Lasers Opt. 81: 1015–1047.

    Article  CAS  Google Scholar 

  11. Gong, J. X., X. M. Zhao, Q. R. **ng, F. Li, H. Y. Li, Y. F. Li, L. Chai, Q. Y. Wang, and A. Zheltikov (2008) Femtosecond laserinduced cell fusion. Appl. Phys. Lett. 92: 093901.

    Article  Google Scholar 

  12. Manevitch, Z., D. Lev, M. Hochberg, M. Palhan, A. Lewis, and C. D. Enk (2010) Direct antifungal effect of femtosecond laser on Trichophyton rubrum onychomycosis. Photochem. Photobiol. 86: 476–479.

    Article  CAS  Google Scholar 

  13. Song, H., S. H. Jang, J. M. Park, and S. Y. Lee (2008) Modeling of batch fermentation kinetics for succinic acid production by Mannheimia succiniciproducens. Biochem. Eng. J. 40: 107–115.

    Article  CAS  Google Scholar 

  14. Shang, L., D. D. Fan, M. I. Kim, J. D. R. Choi, and H. N. Chang (2007) Modeling of poly(3-hydroxybutyrate) production by high cell density fed-batch culture of Ralstonia eutropha. Biotechnol. Bioproc. Eng. 12: 417–423.

    Article  CAS  Google Scholar 

  15. Kohli, R., B. Biplab, and G. P. Kumar (2001) Induction of phr gene expression in E. coli strain KY706/pPL-1 by He-Ne laser (632.8 nm) irradiation. J. Photochem. Photobiol. B: Biol. 60: 136–142.

    Article  CAS  Google Scholar 

  16. Xu, Z. N., W. H. Shen, X. Y. Chen, J. P. Lin, and P. L. Cen (2005) A high-throughput method for screening of rapamycin-producing strains of Streptomyces hygroscopicus by cultivation in 96-well microtiter plates. Biotechnol. Lett. 27: 1135–1140.

    Article  CAS  Google Scholar 

  17. Xu, W. M., S. Yang, P. Bhadury, J. He, M. He, L. L. Gao, D. Y. Hu, and B. A. Song (2011) Synthesis and bioactivity of novel sulfone derivatives containing 2,4-dichlorophenyl substituted 1,3,4-oxadiazole/thiadiazole moiety as chitinase inhibitors. Pestic. Biochem. Phys. 101: 6–15.

    Article  CAS  Google Scholar 

  18. Andrews, J. F. (1968) A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng. 10: 707–723.

    Article  CAS  Google Scholar 

  19. Bajpai, R. K. and M. Reuss (1980) Mechanistic model for penicillin production. J. Chem. Tech. Biotechnol. 30: 332–344.

    CAS  Google Scholar 

  20. Luedeking, R. and E. L. Piret (1959) A kinetic study of the lactic acid fermentation:Batch process at controlled pH. J. Biochem. Microbiol. Technol. Eng. 1: 393–431.

    Article  CAS  Google Scholar 

  21. He, L., Y. Q. Xu, and X. H. Zhang (2008) Medium factor optimization and fermentation kinetics for Phenazing-1-Carboxylic acid production by Pseudomonas sp. M18G. Biotechnol. Bioeng. 100: 250–259.

    Article  CAS  Google Scholar 

  22. Wang, X., P. Xu, Y. Yuan, C. Liu, D. Zhang, Z. Yang, C. Yang, and C. Ma (2006) Modeling for gellan gum production by Sphingomonas paucimobilis ATCC 31461 in a simplified medium. Appl. Environ. Microbiol. 72: 3367–3374.

    Article  CAS  Google Scholar 

  23. Hodge, J. E. and B. T. Hofreiter (1962) Determination of reducing sugars and carbohydrates. pp. 380–394. In: R. L. Whistler and M. L. Wolfrom (eds.). Methods in Carbohydrate Chemistry. Academic Press, NY, USA.

    Google Scholar 

  24. Lu, W. Y., J. H. Fan, J. P. Wen, Z. D. **a, and Q. G. Caiyin (2011) Kinetic analysis and modeling of daptomycin batch fermentation by Streptomyces roseosporus. Appl. Biochem. Biotechnol. 163: 453–462.

    Article  CAS  Google Scholar 

  25. Botchway, S. W., P. Reynolds, A.W. Parker, and P. O’Neill (2010) Use of near infrared femtosecond lasers as sub-micron radiation microbeam for cell DNA damage and repair studies. Mutat. Res. 704: 38–44.

    Article  CAS  Google Scholar 

  26. Essam, T., M. A. Amin, O. E. Tayeb, B. Mattiasson, and B. Guieysse (2010) Kinetics and metabolic versatility of highly tolerant phenol degrading Alcaligenes strain TW1. J. Hazard. Mater. 173: 783–788.

    Article  CAS  Google Scholar 

  27. Onysko, K. A., H. M. Budman, and C. W. Robinson (2000) Effect of temperature on the inhibition kinetics of phenol biodegradation by Pseudomonas putida O5. Biotechnol. Bioeng. 70: 291–299.

    Article  CAS  Google Scholar 

  28. Hatanaka, H., T. Kino, S. Miyata, N. Inamura, A. Kuroda, T. Goto, H. Tanaka, and M. Okuhara (1988) FR-900520 and FR-900523, novel immunosuppressants isolated from a Streptomyces II. Fermentation, isolation and physico-chemical and biological characteristics. J. Antibiot. 411: 1592–1601.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-** Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, Hs., **n, X., Li, Ss. et al. Higher-level production of ascomycin (FK520) by Streptomyces hygroscopicus var. ascomyceticus irradiated by femtosecond laser. Biotechnol Bioproc E 17, 770–779 (2012). https://doi.org/10.1007/s12257-012-0114-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0114-2

Keywords

Navigation