Log in

Proteoty**: A new approach studying influenza virus evolution at the protein level

  • Published:
Virologica Sinica

Abstract

Phylogenetic methods have been widely used to detect the evolution of influenza viruses. However, previous phylogenetic studies of influenza viruses do not make full use of the genetic information at the protein level and therefore cannot distinguish the subtle differences among viral genes. Proteoty** is a new approach to study influenza virus evolution. It aimed at mining the potential genetic information of the viral gene at the protein level by visualizing unique amino acid signatures (proteotypes). Neuraminidase gene fragments of some H5N1 avian influenza viruses were used as an example to illustrate how the proteoty** method worked. Bayesian analysis confirmed that the NA gene tree was mainly divided into three lineages. The NA proteotype analysis further suggested there might be multiple proteotypes within these three lineages and even within single genotypes. At the same time, some proteotypes might even involve more than one genotype. In particular, it also discovered some amino acids of viruses of some genotypes might co-reassort. All these results proved this approach could provide additional information in contrast to results from standard phylogenetic tree analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choi Y K, Ozaki H, Webby R J, et al. 2004. Continuing Evolution of H9N2 Influenza Viruses in Southern China. J Virol, 78: 8609–8614.

    Article  PubMed  CAS  Google Scholar 

  2. Cummings J L. 2003. Toward a molecular neuropsychiatry of neurodegenerative diseases. Ann Neurol, 54(2): 147–154.

    Article  PubMed  CAS  Google Scholar 

  3. Cummings J L. 2004. Dementia with Lewy Bodies: Molecular Pathogenesis and Implications for Classification. J Geriatr Psychiatry Neurol, 17(3): 112–119.

    Article  PubMed  Google Scholar 

  4. Guan Y, Peiris J S M, Lipatov A S, et al. 2002. Emergence of multiple genotypes of H5N1 avian influenza viruses in Hong Kong SAR. Proc Natl Acad Sci USA, 99: 8950–8955.

    Article  PubMed  CAS  Google Scholar 

  5. Guan Y, Poon L L M, Cheung C Y, et al. 2004. H5N1 influenza: A protean pandemic threat. Proc Natl Acad SciUSA, 101: 8156–8161.

    Article  CAS  Google Scholar 

  6. Holmes E C, Ghedin E, Miller N, et al. 2005. Whole-genome analysis of human influenza A virus reveals multiple persistent lineages and Reassortment among Recent H3N2 Viruses. Plos Biology, 3: 1579–1589.

    Article  CAS  Google Scholar 

  7. Hatta M, Gao P, Halfmann P, et al. 2001. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science, 293: 1840–1842.

    Article  PubMed  CAS  Google Scholar 

  8. http://www.flu.org.cn/upfile/attachment/200693093153272.pdf

  9. Huang K, Fan X H. 2005. Molecular Epidemiological Studies on H5N1 Influenza Viruses from Poultry in Nanning (Mr. thesis).: Guangxi Medical University, Guangxi, China. (in Chinese)

    Google Scholar 

  10. Iwatsuki-Horimoto K, Kanazawa R, Sugii S, et al. 2004. The index influenza A virus subtype h5n1 isolated from a human in 1997 differs in its receptor-binding properties from a virulent avian influenza virus. J Gen Virol, 85: 1001–1005.

    Article  PubMed  CAS  Google Scholar 

  11. Kou Z, Lei F M, Yu J, et al. 2005. New genotype of avian influenza H5N1 viruses isolated from tree sparrows in China. J Virol, 79: 15460–15466.

    Article  PubMed  CAS  Google Scholar 

  12. Kumar S, Tamura K, Nei M. 2004. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform, 5: 150–163.

    Article  PubMed  CAS  Google Scholar 

  13. Li K S, Guan Y, Wang J, et al. 2004. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature, 430: 209–213.

    Article  PubMed  CAS  Google Scholar 

  14. Lutskiy M I, Rosen F S, Remold-O’Donnell E. 2005. Genotype-Proteotype Linkage in the Wiskott-Aldrich Syndrome. J Immunol, 175: 1329–1336.

    PubMed  CAS  Google Scholar 

  15. Matrosovich M N, Krauss S, Webster R G. 2001. H9N2 influenza A viruses from poultry in Asia have human virus-like receptor specificity. Virology, 281: 156–162.

    Article  PubMed  CAS  Google Scholar 

  16. Matrosovich M, Zhou N N, Kawaoka Y, et al. 1999. The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J Virol, 73: 1146–1155.

    PubMed  CAS  Google Scholar 

  17. Obenauer J C, Denson J, Mehta P K, et al. 2006. Large-scale sequence analysis of avian influenza isolates. Science, 311(5767): 1576–1580.

    Article  PubMed  CAS  Google Scholar 

  18. Rodriguez C, Quero C, Dominguez A, et al. 2006. Proteoty** of human haptoglobin by MALDI-TOF profiling: Phenotype distribution in a population of toxic oil syndrome patients. Proteomics, 6(Suppl 1): S272–S281.

    Article  PubMed  Google Scholar 

  19. Ronquist F, Huelsenbeck J P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19: 1572–1574.

    Article  PubMed  CAS  Google Scholar 

  20. Roth M J, Forbes A J, Boyne II M T, et al. 2005. Precise and Parallel Characterization of Coding Polymorphisms, Alternative Splicing and Modifications in Human Proteins by Mass Spectrometry. Mol Cell Proteomics, 4(7): 1002–1008.

    Article  PubMed  CAS  Google Scholar 

  21. Shillingford J M, Miyoshi K, Robinson G W, et al. 2003. Proteoty** of Mammary Tissue from Transgenic and Gene Knockout Mice with Immunohistochemical Markers: a Tool To Define Developmental Lesions. J Histochem Cytochem, 51(5): 555–565.

    PubMed  CAS  Google Scholar 

  22. Simmons M P, Ochoterena H. 2000. Gaps as Characters in Sequence-Based Phylogenetic Analyses. Syst Biol, 49(2): 369–381.

    Article  PubMed  CAS  Google Scholar 

  23. Thompson J D, Gibson T J, Plewniak F, et al. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res, 25: 4876–4882.

    Article  PubMed  CAS  Google Scholar 

  24. Wang J, Li K S. 2004. Genotype Evolution of the H5N1 Influenza Viruses in Aquatic Birds in Southern China (Mr. thesis). Shantou University, Guangdong, China. (in Chinese)

    Google Scholar 

  25. Webster R G, Bean W J, Gorman O T, et al. 1992. Evolution and ecology of influenza A viruses. Microbiol Rev, 56: 152–179.

    PubMed  CAS  Google Scholar 

  26. Zhuang Z P, Huang S, Kowalak J A, et al. 2006. From tissue phenotype to proteotype: Sensitive protein identification in microdissected tumor tissue. Int J Oncol, 28(1): 103–110.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-dong Zhu.

Additional information

Foundation items: National Nature Science Funds (30670242, 30500056)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Wf., Zhang, Z., Peng, L. et al. Proteoty**: A new approach studying influenza virus evolution at the protein level. Virol. Sin. 22, 405–411 (2007). https://doi.org/10.1007/s12250-007-0039-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-007-0039-7

CLC number

Key words

Navigation