Log in

Environmental Influence on Feeding and Biodeposition Rates of Pacific Oysters (Crassostrea gigas) Throughout Its Culture Cycle in a Coastal Lagoon with Upwelling Influence

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Suspended oysters employ physiological strategies to adjust their metabolic needs with the available food resources. Using the biodeposition method, the feeding and processing behavior of Pacific oysters (Crassostrea gigas) was investigated with a field study comparing four periods (May, July, October, and December 2016) with different upwelling intensities in the coastal lagoon of San Quintin Bay (Mexico). We calculated physiological feeding responses throughout the culture cycle, including the clearance rate (CR), filtration rate (FR), net organic ingestion rate (NOIR), net organic absorption rate (NOAR), net organic selection efficiency, net absorption efficiency, and the ammonium excretion rate (AER). The dietary quality predictors showed large fluctuations in terms of total particulate material, organic fraction of seston, and chlorophyll concentration. Unlike the pum** activity, FR, NOIR, and NOAR were related to upwelling conditions, and C. gigas removed twofold, ingested fourfold, and assimilated fivefold more of the organic suspended material during the upwelling season compared with periods of weak upwelling. C. gigas showed the potential of depositing nearly twice the organic biodeposits to the sediments during the intense upwelling events. The highest AER was recorded in July and October, suggesting that seasonal temperature variation is the most important exogenous factor regulating nitrogen metabolism, even in a subtropical environment. Also, mechanistic models incorporating dietary quality predictors to the feeding and processing response functions of C. gigas were performed. We conclude that coastal upwelling plays an important bottom-up control on oysters’ feeding and processing activity, and our results facilitate further studies of the carrying capacity of embayments influenced by eastern boundary current systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed, N., and S. Thompson. 2019. The blue dimensions of aquaculture: a global synthesis. Science of the Total Environment 652: 851–861. https://doi.org/10.1016/j.scitotenv.2018.10.163. Elsevier B.V.

    Article  CAS  Google Scholar 

  • Arambalza, U., M.B. Urrutia, E. Navarro, and I. Ibarrola. 2010. Ingestion, enzymatic digestion and absorption of particles derived from different vegetal sources by the cockle Cerastoderma edule. Journal of Sea Research 64: 408–416. https://doi.org/10.1016/j.seares.2010.06.003. Elsevier B.V.

    Article  CAS  Google Scholar 

  • Aveytua-Alcazar, L., D. Melaku Canu, V.F. Camacho-Ibar, and C. Solidoro. 2020. Changes in upwelling regimes in a Mediterranean-type lagoon: a model application. Ecological Modelling 418: 10808. https://doi.org/10.1016/j.ecolmodel.2019.108908. Elsevier.

    Article  CAS  Google Scholar 

  • Bannister, J., M. Sievers, F. Bush, and N. Bloecher. 2019. Biofouling in marine aquaculture: a review of recent research and developments. Biofouling 35: 631–648. https://doi.org/10.1080/08927014.2019.1640214. Taylor & Francis.

    Article  CAS  Google Scholar 

  • Barillé, L., J. Prou, M. Héral, and D. Razet. 1997. Effects of high natural seston concentrations on the feeding, selection, and absorption of the oyster Crassostrea gigas (Thunberg). Journal of Experimental Marine Biology and Ecology 212: 149–172. https://doi.org/10.1016/S0022-0981(96)02756-6.

    Article  Google Scholar 

  • Bougrier, S., P. Geairon, J.M. Deslous-Paoli, C. Bacher, and G. Jonquières. 1995. Allometric relationships and effects of temperature on clearance and oxygen consumption rates of Crassostrea gigas (Thunberg). Aquaculture 134: 143–154. https://doi.org/10.1016/0044-8486(95)00036-2.

    Article  Google Scholar 

  • Buzin, F., B. Dupuy, S. Lefebvre, L. Barillé, and J. Haure. 2015. Storage of Pacific oysters Crassostrea gigas in recirculating tank: ammonia excretion and potential nitrification rates. Aquacultural Engineering 64: 8–14. https://doi.org/10.1016/j.aquaeng.2014.11.007. Elsevier B.V.

    Article  Google Scholar 

  • Camacho-Ibar, V.F., J.D. Carriquiry, and S.V. Smith. 2003. Non-conservative P and N fluxes and net ecosystem production in San Quintin Bay, México. Estuaries 26: 1220–1237. https://doi.org/10.1007/BF02803626.

    Article  CAS  Google Scholar 

  • Caso, M., C. González-Abraham, and E. Ezcurra. 2007. Divergent ecological effects of oceanographic anomalies on terrestrial ecosystems of the Mexican Pacific coast. Proceedings of the National Academy of Sciences of the United States of America 104: 10530–10535. https://doi.org/10.1073/pnas.0701862104.

    Article  CAS  Google Scholar 

  • Cognie, B., L. Barillé, and Y. Rincé. 2001. Selective feeding of the oyster Crassostrea gigas fed on a natural microphytobenthos assemblage. Estuaries 24: 126–134. https://doi.org/10.2307/1352819.

    Article  Google Scholar 

  • CONAPESCA (Comisión Nacional de Acuacultura y Pesca). 2021. Anuario Estadístico de Acuacultura y Pesca. Secretaría de Agricultura y Desarrollo Rural del Gobierno de México. https://www.gob.mx/conapesca/documentos/anuario-estadistico-de-acuacultura-y-pesca.

  • Cucco, A., and G. Umgiesser. 2006. Modeling the Venice Lagoon residence time. Ecological Modelling 193: 34–51. https://doi.org/10.1016/j.ecolmodel.2005.07.043.

    Article  Google Scholar 

  • Daesslé, L.W., G. Rendón-Márquez, V.F. Camacho-Ibar, E.A. Gutiérrez-Galindo, E. Shumilin, and E. Ortiz-Campos. 2009. Geochemistry of modern sediments from san quintín coastal lagoon, Baja California: Implication for provenance. Revista Mexicana De Ciencias Geologicas 26: 117–132.

    Google Scholar 

  • del Jiménez-Quiroz, M., C., R. Cervantes-Duarte, R. Funes-Rodríguez, S. A. Barón-Campis, F. de J. García-Romero, S. Hernández-Trujillo, D. U. Hernández-Becerril, et al. 2019. Impact of “The Blob” and “El Niño” in the SW Baja California Peninsula: Plankton and environmental variability of Bahia Magdalena. Frontiers in Marine Science 6: 1–23. https://doi.org/10.3389/fmars.2019.00025.

    Article  Google Scholar 

  • do Nascimento, V.S., K.R. Lapa, C.H.A. de Miranda Gomes, M. Gray, G. da Silva, L.H.P. Garbossa, F.M. Suplicy, and C.M.R. de Melo. 2022. Filtration and biodeposition rates of Crassostrea oysters for southern Brazilian waters. Regional Studies in Marine Science 56: 102677. https://doi.org/10.1016/j.rsma.2022.102677. Elsevier B.V.

    Article  Google Scholar 

  • Domínguez, R., C. Olabarria, S.A. Woodin, D.S. Wethey, L.G. Peteiro, G. Macho, and E. Vázquez. 2021. Contrasting responsiveness of four ecologically and economically important bivalves to simulated heat waves. Marine Environmental Research 164: 105229. https://doi.org/10.1016/j.marenvres.2020.105229.

    Article  CAS  Google Scholar 

  • Dorantes-Gilardi, M., and D. Rivas. 2019. Effects of the 2013–2016 Northeast Pacific warm anomaly on physical and biogeochemical variables off northwestern Baja California, derived from a numerical NPZD ocean model. Deep-Sea Research Part II: Topical Studies in Oceanography 169–170: 104668. https://doi.org/10.1016/j.dsr2.2019.104668. Elsevier Ltd.

    Article  CAS  Google Scholar 

  • Emery, K.A., G.M. Wilkinson, V.F. Camacho-Ibar, M.L. Pace, K.J. McGlathery, J.M. Sandoval-Gil, and J. Hernández-López. 2016. Resource use of an aquacultured oyster (Crassostrea gigas) in the Reverse Estuary Bahía San Quintín, Baja California, México. Estuaries and Coasts 39: 866–874. https://doi.org/10.1007/s12237-015-0021-9. Estuaries and Coasts.

    Article  CAS  Google Scholar 

  • Erler, D.V., D.T. Welsh, W.W. Bennet, T. Meziane, C. Hubas, D. Nizzoli, and A.J.P. Ferguson. 2017. The impact of suspended oyster farming on nitrogen cycling and nitrous oxide production in a sub-tropical Australian estuary. Estuarine, Coastal and Shelf Science 192: 117–127. https://doi.org/10.1016/j.ecss.2017.05.007.

    Article  CAS  Google Scholar 

  • Filgueira, R., M.J. Fernández-Reiriz, and U. Labarta. 2010. Clearance rate of the mussel Mytilus galloprovincialis. II. Response to uncorrelated seston variables (quantity, quality, and chlorophyll content). Ciencias Marinas 36: 15–28.

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations. 2020. Aquaculture, capture, and global production databases; in The State of World Fisheries and Aquaculture. https://www.fao.org/3/cc0461en/online/sofia/2022/capture-fisheries-production.html#ref-note-1_7

  • Fujibayashi, M., O. Nishimura, and T. Sakamaki. 2021. The negative relationship between fouling organisms and the content of eicosapentaenoic acid and docosahexaenoic acid in cultivated Pacific oysters. Crassostrea gigas: Marine Drugs. https://doi.org/10.3390/md19070369.

    Book  Google Scholar 

  • Galimany, E., and L. J, Freeman CJ, Reed S, Segura-García I, and Paul VJ. 2017. Feeding behavior of eastern oysters Crassostrea virginica and hard clams Mercenaria mercenaria in shallow estuaries. Marine Ecology Progress Series 567: 125–137.

    Article  CAS  Google Scholar 

  • Galimany, E., J.M. Rose, M.S. Dixon, R. Alix, Y. Li, and G.H. Wikfors. 2018. Design and use of an apparatus for quantifying bivalve suspension feeding at sea. Journal of Visualized Experiments 2018: 1–10. https://doi.org/10.3791/58213.

    Article  CAS  Google Scholar 

  • García-Esquivel, Z., M.A. González-Gómez, F. Ley-Lou, and A. Mejía-Trejo. 2004. Potencial ostrícola del brazo oeste de Bahía San Quintín: Biomasa actual y estimación preliminar de la capacidad de carga. Ciencias Marinas 30: 61–74.

    Article  Google Scholar 

  • Gardner, J.P.A. 2002. Effects of seston variability on the clearance rate and absorption efficiency of the mussels Aulacomya maoriana, Mytilus galloprovincialis and Perna canaliculus from New Zealand. Journal of Experimental Marine Biology and Ecology 268: 83–101.

    Article  Google Scholar 

  • Gibbs, M.T. 2007. Sustainability performance indicators for suspended bivalve aquaculture activities. Ecological Indicators 7: 94–107. https://doi.org/10.1016/j.ecolind.2005.10.004.

    Article  Google Scholar 

  • Gracia-Escobar, M.F., R. Millán-Núñez, A. González-Silvera, E. Santamaría-del-Ángel, V.F. Camacho-Ibar, and C.C. Trees. 2014. Changes in the abundance and composition of phytoplankton in a coastal lagoon during neap-spring tide conditions. Open Journal of Marine Science 04: 80–100. https://doi.org/10.4236/ojms.2014.42010.

    Article  Google Scholar 

  • Gracia-Escobar, M.F., R. Millán-Núñez, E. Valenzuela-Espinoza, A. González-Silvera, and E. Santamaría-del-Ángel. 2015. Changes in the composition and abundance of phytoplankton in a coastal lagoon of Baja California, México, during 2011. Open Journal of Marine Science 5: 169–181.

    Article  Google Scholar 

  • Gray, M.W., and C.J. Langdon. 2017. Ecophysiology of the Olympia oyster, Ostrea lurida, and Pacific oyster, Crassostrea gigas. Estuaries and Coasts 41: 521–535. https://doi.org/10.1007/s12237-017-0273-7. Estuaries and Coasts.

    Article  Google Scholar 

  • Gray, M.W., and C.J. Langdon. 2018. Ecophysiology of the Olympia oyster, Ostrea lurida, and Pacific oyster, Crassostrea gigas. Estuaries and Coasts 41: 521–535. https://doi.org/10.1007/s12237-017-0273-7. Estuaries and Coasts.

    Article  Google Scholar 

  • Gray, M.W., and C. Langdon. 2019. Particle processing by Olympia oysters Ostrea lurida and Pacific oysters Crassostrea gigas. Estuaries and Coasts 42: 779–791. https://doi.org/10.1007/s12237-018-0480-x. Estuaries and Coasts.

    Article  Google Scholar 

  • Hall, S.A., D. Méthé, S.E. Stewart-clark, K.F. Clark, and R. Tremblay. 2020. Comparison of absorption efficiency and metabolic rate between wild and aquaculture oysters (Crassostrea virginica). Aquaculture Reports 16 Elsevier.

    Article  Google Scholar 

  • Hamann, L., and A. Blanke. 2022. Suspension feeders: diversity, principles of particle separation and biomimetic potential. Journal of the Royal Society Interface. https://doi.org/10.1098/rsif.2021.0741.

    Article  Google Scholar 

  • Hawkins, A.J.S., R.F.M. Smith, B.L. Bayne, and M. Héral. 1996. Novel observations underlying the fast growth of suspension- feeding shellfish in turbid environments: Mytilus edulis. Marine Ecology Progress Series 131: 179–190. https://doi.org/10.3354/meps131179.

    Article  Google Scholar 

  • Hawkins, A.J.S., P.L. Pascoe, H. Parry, M. Brinsley, F. Cacciatore, K.D. Black, J.G. Fang, et al. 2014. Comparative feeding on chlorophyll-rich versus remaining organic matter in bivalve shellfish. Journal of Shellfish Research 32: 883–897. https://doi.org/10.2983/035.032.0332.

    Article  Google Scholar 

  • Higgins, C.B., C. Tobias, M.F. Piehler, A.R. Smyth, R.F. Dame, K. Stephenson, and B.L. Brown. 2013. Effect of aquacultured oyster biodeposition on sediment N2 production in chesapeake bay. Marine Ecology Progress Series 473: 7–27. https://doi.org/10.3354/meps10062.

    Article  CAS  Google Scholar 

  • Hoellein, T.J., C.B. Zarnoch, and R.E. Grizzle. 2015. Eastern oyster (Crassostrea virginica) filtration, biodeposition, and sediment nitrogen cycling at two oyster reefs with contrasting water quality in Great Bay Estuary (New Hampshire, USA). Biogeochemistry 122: 113–129. https://doi.org/10.1007/s10533-014-0034-7.

    Article  CAS  Google Scholar 

  • Iglesias, J.I.P., M.B. Urrutia, E. Navarro, and I. Ibarrola. 1998. Measuring feeding and absorption in suspension-feeding bivalves: An appraisal of the biodeposition method. Journal of Experimental Marine Biology and Ecology 219: 71–86. https://doi.org/10.1016/S0022-0981(97)00175-5.

    Article  Google Scholar 

  • Jacox, M.G., C.A. Edwards, E.L. Hazen, and S.J. Bograd. 2018. Coastal upwelling revisited: Ekman, Bakun, and improved upwelling indices for the U.S. West Coast. Journal of Geophysical Research: Oceans 123: 7332–7350. https://doi.org/10.1029/2018JC014187.

    Article  Google Scholar 

  • Jeschke, J.M., M. Kopp, R. Tollrian, J.M. Jeschke, M. Kopp, and R. Tollrian. 2003. Reviews : Consumer-food systems : Why type I functional responses are exclusive to filter feeders consumer-food systems : Why type I functional responses are exclusive to filter feeders. Bio. Rev. 79: 337–349.

    Article  Google Scholar 

  • Jiang, T., H. Pan, L. Steeves, Z. Jiang, R. Filgueira, Ø. Strand, T. Strohmeier, P.J. Cranford, and Z. Cui. 2022. Effect of Mytilus coruscus selective filtration on phytoplankton assemblages. Frontiers in Marine Science 9: 1–14. https://doi.org/10.3389/fmars.2022.1070737.

    Article  Google Scholar 

  • Jiang, Z., P. Du, Y. Liao, Q. Liu, Q. Chen, L. Shou, J. Zeng, and J. Chen. 2019. Oyster farming control on phytoplankton bloom promoted by thermal discharge from a power plant in a eutrophic, semi-enclosed bay. Water Research, 159. https://doi.org/10.1016/j.watres.2019.04.023. Elsevier Ltd: 1–9.

    Article  Google Scholar 

  • Jiang, Y., G. Yin, L. Hou, M. Liu, Y. Zheng, P. Han, D. Zheng, C. Chen, and M. Li. 2021. Marine aquaculture regulates dissimilatory nitrate reduction processes in a typical semi-enclosed bay of southeastern China. Journal of Environmental Sciences (China) 104: 376–386. https://doi.org/10.1016/j.jes.2020.12.025. Elsevier B.V.

    Article  CAS  Google Scholar 

  • Jung, A.S., H.W. van der Veer, M.T.J. van der Meer, and C.J.M. Philippart. 2019. Seasonal variation in the diet of estuarine bivalves. PLoS ONE 14: 1–23. https://doi.org/10.1371/journal.pone.0217003.

    Article  CAS  Google Scholar 

  • Loret, P., A. Pastoureaud, C. Bacher, and B. Delesalle. 2000. Phytoplankton composition and selective feeding of the pearl oyster Pinctada margaritifera in the Takapoto lagoon (Tuamotu archipelago, French Polynesia). Marine Ecology Progress Series 199: 55–67.

    Article  CAS  Google Scholar 

  • Lynn, R.J., and S.J. Bograd. 2002. Dynamic evolution of the 1997–1999 El Niño–La Niña cycle in the southern California current system. Progress in Oceanography 54: 59–75. https://doi.org/10.1016/S0079-6611(02)00043-5.

    Article  Google Scholar 

  • MacDonald, B.A., and J.E. Ward. 2009. Feeding activity of scallops and mussels measured simultaneously in the field: repeated measures sampling and implications for modelling. Journal of Experimental Marine Biology and Ecology 371: 42–50. https://doi.org/10.1016/j.jembe.2009.01.002. Elsevier B.V.

    Article  Google Scholar 

  • Mao, Y., Y. Zhou, H. Yang, and R. Wang. 2006. Seasonal variation in metabolism of cultured Pacific oyster, Crassostrea gigas, in Sanggou Bay, China. Aquaculture 253: 322–333. https://doi.org/10.1016/j.aquaculture.2005.05.033.

    Article  CAS  Google Scholar 

  • Marescaux, J., E. Falisse, J. Lorquet, K. Van Doninck, J.N. Beisel, and J.P. Descy. 2016. Assessing filtration rates of exotic bivalves: dependence on algae concentration and seasonal factors. Hydrobiologia 777: 67–78. https://doi.org/10.1007/s10750-016-2764-0. Springer International Publishing.

    Article  CAS  Google Scholar 

  • McFarland, K., J. Vignier, and E. Standen. 2022. Synergistic effects of salinity and temperature on the eastern oyster Crassostrea virginica throughout the lifespan. Marine Ecology Progress Series 700: 111–124.

    Article  Google Scholar 

  • Melaku Canu, D., L. Aveytua-Alcázar, V.F. Camacho-Ibar, S. Querin, and C. Solidoro. 2016. Hydrodynamic properties of San Quintin Bay, Baja California: merging models and observations. Marine Pollution Bulletin 108: 203–214. https://doi.org/10.1016/j.marpolbul.2016.04.030. Elsevier Ltd.

    Article  CAS  Google Scholar 

  • Millán-Núñez, R., E. Millán-Núñez, S. Álvarez-Borrego, C.C. Trees, and E. Santamaría-Del-Ángel. 2004. Variabilidad de la comunidad del fitoplancton en Bahía San Quintín estimada mediante el análisis de pigmentos Variability of the phytoplankton community in San Quintín Bay based on pigment analysis. Ciencias Marinas 30: 145–153.

    Article  Google Scholar 

  • Mitchell, I.M. 2006. In situ biodeposition rates of Pacific oysters (Crassostrea gigas) on a marine farm in Southern Tasmania (Australia). Aquaculture 257: 194–203. https://doi.org/10.1016/j.aquaculture.2005.02.061.

    Article  Google Scholar 

  • Murphy, A.E., D. Nizzoli, M. Bartoli, A.R. Smyth, G. Castaldelli, and I.C. Anderson. 2018. Variation in benthic metabolism and nitrogen cycling across clam aquaculture sites. Marine Pollution Bulletin 127: 524–535. https://doi.org/10.1016/j.marpolbul.2017.12.003. Elsevier.

    Article  CAS  Google Scholar 

  • Navarro, E., S. Méndez, M.B. Urrutia, U. Arambalza, and I. Ibarrola. 2016. Digestive selection underlies differential utilization of phytoplankton and sedimentary organics by infaunal bivalves: Experiments with cockles (Cerastoderma edule) using cross-labelled mixed diets. Marine Environmental Research 120: 111–121. https://doi.org/10.1016/j.marenvres.2016.07.013.

    Article  CAS  Google Scholar 

  • Pales Espinosa, E., and B. Allam. 2018. Reverse genetics demonstrate the role of mucosal C-type lectins in food particle selection in the oyster Crassostrea virginica. Journal of Experimental Biology 221: jeb174094. https://doi.org/10.1242/jeb.174094.

    Article  Google Scholar 

  • Pan, K., W. Lan, T. Li, M. Hong, X. Peng, Z. Xu, W. Liu, and H. Jiang. 2021. Control of phytoplankton by oysters and the consequent impact on nitrogen cycling in a subtropical bay. Science of the Total Environment 796: 149007. https://doi.org/10.1016/j.scitotenv.2021.149007. Elsevier B.V.

    Article  CAS  Google Scholar 

  • Peteiro, L.G., S.A. Woodin, D.S. Wethey, D. Costas-costas, A. Martínez-casal, C. Olabarria, and E. Vázquez. 2018. Responses to salinity stress in bivalves : Evidence of ontogenetic changes in energetic physiology on Cerastoderma edule. Scientific Reports 8: 1–9. https://doi.org/10.1038/s41598-018-26706-9.

    Article  CAS  Google Scholar 

  • Pietros, J.M., and M.A. Rice. 2003. The impacts of aquacultured oysters, Crassostrea virginica (Gmelin, 1791) on water column nitrogen and sedimentation : Results of a mesocosm study. Aquaculture 220: 407–422. https://doi.org/10.1016/S0044-8486(02)00574-4.

    Article  Google Scholar 

  • Pourmozaffar, S., S. Tamadoni Jahromi, H. Rameshi, A. Sadeghi, T. Bagheri, S. Behzadi, M. Gozari, M.R. Zahedi, and S. Abrari Lazarjani. 2020. The role of salinity in physiological responses of bivalves. Reviews in Aquaculture 12: 1548–1566. https://doi.org/10.1111/raq.12397.

    Article  Google Scholar 

  • Pouvreau, S., Y. Bourles, S. Lefebvre, A. Gangnery, and M. Alunno-Bruscia. 2006. Application of a dynamic energy budget model to the Pacific oyster, Crassostrea gigas, reared under various environmental conditions. Journal of Sea Research 56: 156–167. https://doi.org/10.1016/j.seares.2006.03.007.

    Article  Google Scholar 

  • Rahman, M.A., S. Henderson, P.A. Miller-Ezzy, X.X. Li, and J.G. Qin. 2020. Analysis of the seasonal impact of three marine bivalves on seston particles in water column. Journal of Experimental Marine Biology and Ecology. https://doi.org/10.1016/j.jembe.2019.151251.

    Article  Google Scholar 

  • Ray, N.E., and R.W. Fulweiler. 2020. Seasonal patterns of benthic−pelagic coupling in oyster habitats. Marine Ecology Progress Series 652: 95–109. https://doi.org/10.3354/meps13490. Inter-Research Science Center.

    Article  CAS  Google Scholar 

  • Ren, Jeffrey S., and A.H. Ross. 2001. A dynamic energy budget model of the Pacific oyster Crassostrea gigas. Ecological Modelling 142: 105–120. https://doi.org/10.1016/S0304-3800(01)00282-4.

    Article  Google Scholar 

  • Ren, J.S., A.H. Ross, and D.R. Schiel. 2000. Functional descriptions of feeding and energetics of the Pacific oyster Crassostrea gigas in New Zealand. Marine Ecology Progress Series 208: 119–130. https://doi.org/10.3354/meps208119.

    Article  Google Scholar 

  • Ribas-Ribas, M., J.M. Hernández-Ayón, V.F. Camacho-Ibar, A. Cabello-Pasini, and A. Mejia-Trejo. 2011. Estuarine, Coastal and shelf science effects of upwelling, tides and biological processes on the inorganic carbon system of a coastal lagoon in Baja California. Estuarine, Coastal and Shelf Science 95: 367–376. https://doi.org/10.1016/j.ecss.2011.09.017. Elsevier Ltd.

    Article  CAS  Google Scholar 

  • Rose, J.M., S.B. Bricker, and J.G. Ferreira. 2015. Comparative analysis of modeled nitrogen removal by shellfish farms. Marine Pollution Bulletin 91: 185–190. https://doi.org/10.1016/j.marpolbul.2014.12.006. Elsevier Ltd.

    Article  CAS  Google Scholar 

  • Sandoval-Gil, J.M., V.F. Camacho-Ibar, M. del Carmen Ávila-López, J. Hernández-López, J.A. Zertuche-González, and A. Cabello-Pasini. 2015. Dissolved inorganic nitrogen uptake kinetics and δ15N of Zostera marina L. (eelgrass) in a coastal lagoon with oyster aquaculture and upwelling influence. Journal of Experimental Marine Biology and Ecology 472: 1–13. https://doi.org/10.1016/j.jembe.2015.06.018. Elsevier B.V.

    Article  CAS  Google Scholar 

  • Sandoval-Gil, J., A. Alexandre, R. Santos, and V.F. Camacho-Ibar. 2016. Nitrogen uptake and internal recycling in Zostera marina exposed to oyster farming: eelgrass potential as a natural biofilter. Estuaries and Coasts 39: 1694–1708. https://doi.org/10.1007/s12237-016-0102-4. Estuaries and Coasts.

    Article  CAS  Google Scholar 

  • Sandoval-Gil, J.M., M. Ávila-López, V.F. Camacho-Ibar, J. Hernández-Ayón, J. Zertuche-González, and A. Cabello-Pasini. 2019. Regulation of nitrate uptake by the seagrass Zostera marina during upwelling. Estuaries and Coasts 42: 731–742. https://doi.org/10.1007/s12237-019-00523-3. Estuaries and Coasts.

    Article  CAS  Google Scholar 

  • Smaal, A.C., J.G. Ferreira, J. Grant, J.K. Petersen, and Ø. Strand. 2019. Goods and services of marine bivalves. Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-319-96776-9.

  • Solórzano, L. 1969. Determination of ammonia in natural waters by the phenol hypochlorite method. Limnology and Oceanography 14: 799–801. https://doi.org/10.4319/lo.1969.14.5.0799.

    Article  Google Scholar 

  • Tran, B.T., K.-Y. Kim, J.S. Heo, S.-J. Park, H.K. Park, and Y.H. Choi. 2022. Determination of the Pacific oyster Magallana gigas (Crassostrea gigas) diet composition in two aquaculture farms by fecal DNA metabarcoding. Aquaculture 552: 738042. https://doi.org/10.1016/j.aquaculture.2022.738042.

    Article  CAS  Google Scholar 

  • Troell, M., A. Joyce, T. Chopin, A. Neori, A.H. Buschmann, and J.-G. Fang. 2009. Ecological engineering in aquaculture — potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture 297: 1–9. https://doi.org/10.1016/j.aquaculture.2009.09.010.

    Article  Google Scholar 

  • Trottet, A., S. Roy, E. Tamigneaux, C. Lovejoy, and R. Tremblay. 2008. Impact of suspended mussels (Mytilus edulis L.) on plankton communities in a Magdalen Islands lagoon (Québec, Canada): A mesocosm approach. Journal of Experimental Marine Biology and Ecology 365: 103–115. https://doi.org/10.1016/j.jembe.2008.08.001.

    Article  Google Scholar 

  • Wang, T., and Q. Li. 2020. Effects of temperature, salinity and body size on the physiological responses of the Iwagaki oyster Crassostrea nippona. Aquaculture Research 51: 728–737. https://doi.org/10.1111/are.14423.

    Article  CAS  Google Scholar 

  • Ward, D.H., A. Morton, T.L. Tibbitts, D.C. Douglas, and E. Carrera-González. 2003. Long-term change in eelgrass distribution at Bahía San Quintín, Baja California, Mexico, using satellite imagery. Estuaries 26: 1529–1539. https://doi.org/10.1007/BF02803661.

    Article  Google Scholar 

  • Wright, S.W., S.W. Jeffrey, R.F.C. Mantoura, C.A. Llewellyn, T. Bjørnland, D. Repeta, and N. Welschmeyer. 1991. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Marine Ecology Progress Series 77: 183–196 Inter-Research Science Center.

    Article  CAS  Google Scholar 

  • Yang, C.Y., M.T. Sierp, C.A. Abbott, Y. Li, and J.G. Qin. 2016. Responses to thermal and salinity stress in wild and farmed Pacific oysters Crassostrea gigas. Comparative Biochemistry and Physiology -Part A : Molecular and Integrative Physiology 201: 22–29. https://doi.org/10.1016/j.cbpa.2016.06.024. Elsevier Inc.

    Article  CAS  Google Scholar 

  • Yu, Z., Y. Zhou, Z. Qi, P. Luo, and C. Hu. 2017. Temporal dynamics in clearance rate of the Portuguese oyster Crassostrea angulata cultivated in Dapeng Cove, southern China. Aquaculture 479: 824–828. https://doi.org/10.1016/j.aquaculture.2017.07.030. Elsevier.

    Article  Google Scholar 

  • Zaba, K.D., and D.L. Rudnick. 2016. The 2014–2015 warming anomaly in the Southern California Current System observed by underwater gliders. Geophysical Research Letters 43: 1241–1248. https://doi.org/10.1002/2015GL067550.

    Article  Google Scholar 

  • Zertuche-González, J.A., V.F. Camacho-Ibar, I. Pacheco-Ruíz, A. Cabello-Pasini, L.A. Galindo-Bect, J.M. Guzmán-Calderón, V. Macias-Carranza, and J. Espinoza-Avalos. 2009. The role of Ulva spp. as a temporary nutrient sink in a coastal lagoon with oyster cultivation and upwelling influence. Journal of Applied Phycology 21: 729–736. https://doi.org/10.1007/s10811-009-9408-y.

    Article  Google Scholar 

  • Zhang, J., Q. Li, S. Liu, H. Yu, and L. Kong. 2018. The effect of temperature on physiological energetics of a fast-growing selective strain and a hatchery population of the Pacific oyster (Crassostrea gigas). Aquaculture Research 49: 2844–2851. https://doi.org/10.1111/are.13747.

    Article  Google Scholar 

Download references

Acknowledgements

Special recognition is given to Dr. Karla Mejía-Piña (FCM-UABC) for her assistance during the field experiments and to Eduardo Ortíz-Campos for his technical assistance in the laboratory. We are also grateful to personnel from Ostrícola Nautilus for their support during field samplings. We thank the anonymous reviewers for their valuable feedback that greatly improved this manuscript.

Funding

This research was developed within the SEP-CONACyT project “Integral study of the Nitrogen cycling in Bahía Falsa, Baja California” (Ref. no. CONACyT-UABC CB-2010–01-154376) awarded to V.F.C.-I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Camacho-Ibar.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Communicated by Rachel Kelley Gittman

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 106 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samperio-Ramos, G., Vidal-Nieves, C., García-Esquivel, Z. et al. Environmental Influence on Feeding and Biodeposition Rates of Pacific Oysters (Crassostrea gigas) Throughout Its Culture Cycle in a Coastal Lagoon with Upwelling Influence. Estuaries and Coasts 47, 1282–1298 (2024). https://doi.org/10.1007/s12237-024-01357-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-024-01357-4

Keywords

Navigation