Log in

Study on Preparation and Properties of CA/PLA Nonwoven Filter Materials Optimized by Response Surface Methodology

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In order to increase the product diversity and wide application of cellulose acetate fiber in the field of nonwoven filtration, combined with the rapid development of green fiber, the response surface methodology (RSM) was used to optimize the parameters of cellulose acetate/polylactic acid (CA/PLA) nonwoven in the preparation process. The hybrid ratio, linear density, and fiber length of CA fiber were selected to optimize the preparation process of nonwovens with filtration efficiency and tensile strength as response values. The results showed that the hybrid ratio was 80%, the linear density was 3.33dtex, and the fiber length was 46 mm. Under this process, the filtration efficiency of CA/PLA nonwoven is 35.74%, longitudinal tensile strength is 0.734 MPa, and transverse tensile strength is 1.782 MPa, which is close to the theoretical value, indicating that RSM has application value. It can provide a theoretical basis for the preparation parameters of nonwovens with excellent tensile strength and filtration efficiency at the same time. In addition, the air permeability, filtration resistance, and surface morphology of CA/PLA nonwovens were tested. It was found that the effect of hybrid ratio on air permeability and filtration resistance is not obvious, but linear density and fiber length are significant, and CA/PLA nonwovens are three-dimensional structures with disorderly surfaces, which are conducive to filtering dust, particles, and other impurities in the air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data that support the findings of this study are included within the article (and any supplementary files).

References

  1. Y. Zhang, S. Yuan, X. Feng, H. Li, J. Zhou, B. Wang, Preparation of nanofibrous metal-organic framework filters for efficient air pollution control. J. Am. Chem. Soc. 138(18), 5785–5788 (2016)

    Article  CAS  PubMed  Google Scholar 

  2. M. Schiavon, M. Ragazzi, E.C. Rada, V. Torretta, Air pollution control through biotrickling filters: a review considering operational aspects and expected performance. Crit. Rev. Biotechnol. 36(6), 1143–1155 (2016)

    Article  CAS  PubMed  Google Scholar 

  3. L.R. Crilley, A.A. Angelucci, B. Malile, C. Young, T. VandenBoer, J. Chen, Non-woven materials for cloth-based face masks inserts: relationship between material properties and sub-micron aerosol filtration. Environ. Sci.-Nano 8(6), 1603–1613 (2021)

    Article  CAS  Google Scholar 

  4. I. Krivolapov, A. Astapov, D. Akishin, A. Korotkov, S. Shcherbakov, Determination of the air purification efficiency when using a biofilter. J. Ecol. Eng. 20(11), 232–239 (2019)

    Article  Google Scholar 

  5. C.L. Li, W.Z. Song, D.J. Sun, A self-priming air filtration system based on triboelectric nanogenerator for active air purification. Chem. Eng. J. 452, 139428 (2023)

    Article  CAS  Google Scholar 

  6. J. Luo, J.B. Fan, S. Wang, Recent progress of microfluidic devices for hemodialysis. Small 16(9), 1904076 (2020)

    Article  CAS  Google Scholar 

  7. K. Matsuyama, T. Tomo, J. Kadota, Acetate-free blood purification can impact improved nutritional status in hemodialysis patients. J. Artif. Organs 14, 112–119 (2011)

    Article  CAS  PubMed  Google Scholar 

  8. X. Chen, Z. Wang, S. Pan, H. Pan, Improvement of engine performance and emissions by biomass oil filter in diesel engine[J]. Fuel 235, 603–609 (2019)

    Article  CAS  Google Scholar 

  9. R. Zhang, C. Liu, P.C. Hsu, C. Zhang, N. Liu, J. Zhang, H. Lee, Y. Lu, Y. Qiu, S. Chu, Y. Cui, Nanofiber air filters with high-temperature stability for efficient PM2.5 removal from the pollution sources. Nano Let. 16(6), 3642–3649 (2016)

    Article  CAS  Google Scholar 

  10. L.D. Hylander, A. Kietlinska, G. Renman, G. Siman, Phosphorus retention in filter materials for wastewater treatment and its subsequent suitability for plant production. Biores. Technol. 97(7), 914–921 (2006)

    Article  CAS  Google Scholar 

  11. J.H. Chen, J.K. Xu, K. Wang, X.F. Cao, R.C. Sun, Cellulose acetate fibers prepared from different raw materials with rapid synthesis method. Carbohyd. Polym. 137, 685–692 (2016)

    Article  CAS  Google Scholar 

  12. X.P. Si, S.J. Zhang, Y. Chen, J.H. Cao, Z.X. Cao, K. Luo, X. Tai, The research development of cellulose acetate fiber and cellulose acetate nanofiber used as filtering materials. Key Eng. Mater. 671, 279–284 (2016)

    Article  Google Scholar 

  13. E.M. Lewit, D. Coate, M. Grossman, The effects of government regulation on teenage smoking, in Determinants of health: an economic perspective. ed. by M. Grossman (Columbia University Press, America, 2017), pp.482–508

    Chapter  Google Scholar 

  14. Y. Chen, Y. Fei, Y. Wang, Preparation and characterization of cellulose acetate nanofibers membrane. Mater. Rep. 5(24), 97–113 (2010)

    Google Scholar 

  15. M. Tan, R. Yang, H. Wang, Preparation and properties of acetate nanofiber/PP spunbonded nonwoven air filtration composites. **an Text. Cloth. China 1, 17–19 (2012)

    Google Scholar 

  16. K. Hamad, M. Kaseem, H.W. Yang, F. Deri, Y. Ko, Properties and medical applications of polylactic acid: a review. Express Polym Lett 9(5), 435–455 (2015)

    Article  CAS  Google Scholar 

  17. M.S. Singhvi, S.S. Zinjarde, D.V. Gokhale, Polylactic acid: synthesis and biomedical applications. J. Appl. Microbiol. 127(6), 1612–1626 (2019)

    Article  CAS  PubMed  Google Scholar 

  18. R. Siakeng, M. Jawaid, H. Ariffin, S. Sapuan, M. Asim, N. Saba, Natural fiber reinforced polylactic acid composites: a review. Polym. Compos. 40(2), 446–463 (2019)

    Article  CAS  Google Scholar 

  19. S.J. Zhang, L.S. Fu, Z.W. Yang, M.K. **g, R. Wang, Response surface methodology for optimizing the preparation process of cellulose acetate/polylactic acid nonwoven surgical gown material. Fibers Polym. 22(4), 928–935 (2021)

    Article  CAS  Google Scholar 

  20. GB/T 3923.1–2013. Textiles-Tensile properties of fabrics-Part 1: Determination of maximum force and elongation at maximum force using the strip method[S]. Standardization Administration of the Peoples Republic of China, 2013

  21. GB/T 38413–2019. Textiles-Test methods for filtration of particulate matter[S]. State Administration for Market Regulation and Standardization Administration of the Peoples Republic of China, 2019

  22. GB/T 5453–1997. Textiles-Determination of the permeability of fabrics to air[S]. State Bureau of Technical Supervision, 1997

  23. N. Aslan, Y. Cebeci, Application of Box-Behnken design and response surface methodology for modeling of some Turkish coals. Fuel 86(1–2), 90–97 (2007)

    Article  CAS  Google Scholar 

  24. S. Polat, P. Sayan, Application of response surface methodology with a Box-Behnken design for struvite precipitation. Adv. Powder Technol. 30(10), 2396–2407 (2019)

    Article  CAS  Google Scholar 

  25. A.N. Frone, S. Berlioz, J.F. Chailan, D.M. Panaitescu, D. Donescu, Cellulose fiber-reinforced polylactic acid. Polym. Compos. 32(6), 976–985 (2011)

    Article  CAS  Google Scholar 

  26. S. Zhang, Z. Zhang, L. Fu, R. Wang, Preparation and properties research of spunlaced cellulose acetate/polylactic acid mask base cloth. J. Text. Inst. 113(11), 2472–2479 (2022)

    Article  CAS  Google Scholar 

  27. X.P. Si, Study on preparation and properties of acetate fiber nonwoven filter materials[D] (Tiangong University, China, 2015)

    Google Scholar 

  28. S. Grishanov, Structure and properties of textile materials (Handbook of textile and industrial dyeing. Woodhead Publishing, England, 2011), pp.28–63

    Google Scholar 

  29. S. Chattopadhyay, T.A. Hatton, G.C. Rutledge, Aerosol filtration using electrospun cellulose acetate fibers. J. Mater. Sci. 51, 204–217 (2016)

    Article  CAS  Google Scholar 

  30. H.M. Wang, Y.T. Chou, C.S. Wu, J.T. Yeh, Polyester/cellulose acetate composites: preparation, characterization and biocompatible. J. Appl. Polym. Sci. 126(2), 242–251 (2012)

    Google Scholar 

  31. S.F. Gomaa, T.M. Madkour, S. Moghannem, I.M. El-Sherbiny, New polylactic acid/cellulose acetate-based antimicrobial interactive single dose nanofibrous wound dressing mats. Int. J. Biol. Macromol. 105, 1148–1160 (2017)

    Article  CAS  PubMed  Google Scholar 

  32. M. Habibi, E. Ruiz, G. Lebrun, L. Laperrière, Effect of surface density and fiber length on the porosity and permeability of nonwoven flax reinforcement. Text. Res. J. 88(15), 1776–1787 (2018)

    Article  CAS  Google Scholar 

  33. M. Amiot, M. Lewandowski, P. Leite, M. Thomas, A. Perwuelz, An evaluation of fiber orientation and organization in nonwoven fabrics by tensile, air permeability and compression measurements. J. Mater. Sci. 49, 52–61 (2014)

    Article  CAS  Google Scholar 

  34. T. Fukasawa, C. Kanaoka, T. Ishigami, K. Fukui, Effects of surface finish of nonwoven fabric bag filters on filter efficiency. Chem. Eng. Technol. 45(1), 92–99 (2022)

    Article  CAS  Google Scholar 

  35. L.S. Fu, S.J. Zhang, R. Wang, S. Fang, D.Y. Li, T.S. Ma, X.C. Zhao, Design of pipe diameter of polyester-ramie nonwoven lining material for pipeline rehabilitation. Polym. Compos. 41(4), 1490–1499 (2020)

    Article  CAS  Google Scholar 

  36. N.A.F. Othman, S. Selambakkannu, T.M. Ting, A. Hashim, T.A.T. Abdullah, Integration of phosphoric acid onto radiation grafted poly (2, 3-epoxypropyl methacrylate)-PP/PE non-woven fabrics aimed copper adsorbent via response surface method. J. Polym. Res. 26, 1–13 (2019)

    Article  Google Scholar 

  37. M. Shokrollahi, M. Rezakazemi, M. Younas, Producing water from saline streams using membrane distillation: modeling and optimization using CFD and design expert[J]. Int. J. Energy Res. 44(11), 8841–8853 (2020)

    Article  CAS  Google Scholar 

  38. Z. Xu, Y. Huang, L. Liu, C. Zhang, J. Long, J. He, L. Shao, Surface characteristics of kidney and circular section carbon fibers and mechanical behavior of composites. Mater. Chem. Phys. 106(1), 16–21 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Youth Foundation of China (51303128) and the Natural Science Foundation of Tian** (15JCZDJC38400).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Zhang or Shujie Zhang.

Ethics declarations

Conflict of Interest

We have no conflicts of interest to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, L., Ding, W., Zhang, L. et al. Study on Preparation and Properties of CA/PLA Nonwoven Filter Materials Optimized by Response Surface Methodology. Fibers Polym 25, 1675–1690 (2024). https://doi.org/10.1007/s12221-024-00518-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-024-00518-3

Keywords

Navigation