Log in

Investigation on the Airflow Fields of New Melt-blown Dies with Rectangular Jets

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In order to reduce the fiber diameter and the energy consumption in the melt-blowing process, three new slot dies (slot die with air accelerator, slot die with stabilizers and slot die with extensions) are designed. The airflow fields of these dies have been numerically calculated and experimentally verified. The results reveal that the slot die with stabilizers and slot die with extensions have higher average stagnation temperatures, average air pressure and average turbulent kinetic energy than those of the common slot die. Compared with the common slot die, the slot die with air accelerator could increase the average stagnation temperature on the spinning line, however, its average pressure is reduced and the average turbulent kinetic energy is locally increased. By comprehensively comparing the average stagnation temperature, average air pressure and average turbulent kinetic energy on the spinning lines of these slot dies, the new slot die with stabilizers is the most conducive to the attenuation of the melt-blowing fibers and the reduction of energy consumption. The research in this work can have strong guiding significance for the optimization of die structure and the attenuation of melt-blowing fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Q. Xu, X. M. Zhang, X. B. Hao, D. F. Teng, T. N. Zhao, and Y. C. Zeng, Chem. Eng. J., 423, 130175 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. D. F. Teng, A. Wahid, and Y. C. Zeng, Polymer, 201, 122609 (2020).

    Article  Google Scholar 

  3. W. L. Han, S. **e, J. Shi, and X. H. Wang, Polym. Eng. Sci., 59, 1182 (2019).

    Article  CAS  Google Scholar 

  4. B. W. Zhu, S. **e, W. L. Han, and G. J. Jiang, Fiber. Polym., 22, 1594 (2021).

    Article  Google Scholar 

  5. W. L. Han, G. S. Bhat, and X. H. Wang, Ind. Eng. Chem. Res., 55, 3150 (2016).

    Article  CAS  Google Scholar 

  6. X. B. Hao and Y. C. Zeng, Ind. Eng. Chem. Res., 58, 11624 (2019).

    Article  CAS  Google Scholar 

  7. Z. F. Wang, C. W. Macosko, and F. S. Bates, ACS Appl. Mater. Inter., 8, 3006 (2016).

    CAS  Google Scholar 

  8. H. Zhang, Q. Zhen, Y. Liu, L. Wang, X. Y. Guan, and Y. F. Zhang, J. Ind. Text., 51, 1431 (2020).

    Article  Google Scholar 

  9. A. S. Harpham and R. L. Shambaugh, Ind. Eng. Chem. Res., 35, 3776 (1996).

    Article  CAS  Google Scholar 

  10. A. S. Harpham and R. L. Shambaugh, Ind. Eng. Chem. Res., 36, 3937 (1997).

    Article  CAS  Google Scholar 

  11. B. D. Tate and R. L. Shambaugh, Ind. Eng. Chem. Res., 43, 5405 (2004).

    Article  CAS  Google Scholar 

  12. T. Chen, X. H. Wang, and X. B. Huang, Text. Res. J., 74, 1018 (2004).

    Article  CAS  Google Scholar 

  13. X. M. Wang and Q. F. Ke, Polym. Eng. Sci., 45, 1092 (2005).

    Article  CAS  Google Scholar 

  14. S. **e and Y. C. Zeng, Ind. Eng. Chem. Res., 51, 5346 (2012).

    Article  CAS  Google Scholar 

  15. S. **e, W. L. Han, G. J. Jiang, and C. Chen, J. Mater. Sci., 53, 6991 (2018).

    Article  CAS  Google Scholar 

  16. J. J. Jia, S. **e, and C. D. Zhang, ACS Omega, 6, 30012 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Y. Yang and Y. C. Zeng, Ind. Eng. Chem. Res., 59, 10664 (2020).

    Article  CAS  Google Scholar 

  18. Y. D. Wang, C. C. Ji, and J. P. Zhou, e-Polymers, 19, 612 (2019).

    Article  CAS  Google Scholar 

  19. C. C. Ji and Y. D. Wang, e-Polymers, 20, 724 (2020).

    Article  Google Scholar 

  20. H. M. Krutka and R. L. Shambaugh, Ind. Eng. Chem. Res., 41, 5125 (2002).

    Article  CAS  Google Scholar 

  21. H. M. Krutka, R. L. Shambaugh, and D. V. Papavassiliou, Ind. Eng. Chem. Res., 42, 5541 (2003).

    Article  CAS  Google Scholar 

  22. H. M. Krutka, R. L. Shambaugh, and D. V. Papavassiliou, Ind. Eng. Chem. Res., 43, 4199 (2004).

    Article  CAS  Google Scholar 

  23. Y. F. Sun and X. H. Wang, J. Text. Inst., 102, 65 (2011).

    Article  Google Scholar 

  24. Y. F. Sun and X. H. Wang, J. Appl. Polym. Sci., 115, 1540 (2010).

    Article  CAS  Google Scholar 

  25. X. B. Hao and Y. C. Zeng, Text. Res. J., 89, 3221 (2019).

    Article  CAS  Google Scholar 

  26. C. C. Ji, Y. D. Wang, and Y. F. Sun, J. Ind. Text., 50, 1409 (2021).

    Article  Google Scholar 

  27. Y. D. Wang, J. P. Zhou, and X. P. Gao, ACS Omega, 5, 13409 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Y. D. Wang, Y. P. Qiu, C. C. Ji, X. H. Wang, and F. W. Guan, Text. Res. J., 92, 423 (2022).

    Article  CAS  Google Scholar 

  29. Y. D. Wang and X. H. Wang, Polym. Eng. Sci., 54, 110 (2014).

    Article  CAS  Google Scholar 

  30. C. C. Ji, K. Y. Zhang, Y. D. Wang, and X. H. Wang, J. Text. Res., 40, 175 (2019).

    Google Scholar 

  31. F. R. Menter, AIAA J., 32, 1598 (1994).

    Article  Google Scholar 

  32. M. A. J. Uyttendaele and R. L. Shambaugh, AIChE J., 36, 175 (1990).

    Article  CAS  Google Scholar 

  33. B. R. Shambaugh, D. V. Papavassiliou, and R. L. Shambaugh, Ind. Eng. Chem. Res., 50, 12233 (2011).

    Article  CAS  Google Scholar 

  34. V. Bansal and R. L. Shambaugh, Ind. Eng. Chem. Res., 37, 1799 (1998).

    Article  CAS  Google Scholar 

  35. N. Hoda, F. Mert, F. Kara, H. G. Atasagun, and G. S. Bhat, Fiber. Polym., 22, 285 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by the National Natural Science Foundation of China (No. 11702113), the Open Project Program of Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province (MTC-2022-2), the Doctoral Fund Program of Guangxi University of Science and Technology (21Z47), the Natural Science Foundation of Inner Mongolia (Grant No. 2021LHMS01003) and Fujian Natural Science Foundation Project (Grant No.2019J01740).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng **e or Changchun Ji.

Additional information

Conflict of Interest

The author(s) declared no potential conflicts of interest with respect to the research, author-ship, and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Jiang, F., Ning, W. et al. Investigation on the Airflow Fields of New Melt-blown Dies with Rectangular Jets. Fibers Polym 23, 2732–2739 (2022). https://doi.org/10.1007/s12221-022-0043-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-0043-4

Keywords

Navigation