Log in

Valorization of Passion Fruit Stalk by the Preparation of Cellulose Nanofibers and Immobilization of Trypsin

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Fibers from passion fruit stalks were first recovered with a pul** and bleaching process. Two mechanical treatments were further applied to the fibers, homogenization (with and without ultrasound), and blender application. The effect of those treatments on fibers was evaluated. The chemical composition of the different stages of fibers undergoing treatment were measured according to TAPPI standards and were also analyzed by SEM, FTIR, and XRD. Trypsin was immobilized by adsorption and by covalent binding. The biocatalyst support-trypsin was evaluated in terms of immobilization yield, retention, and enzymatic activity. The experimental results demonstrated that the final cellulose concentration in the fibers was 44 % higher than that in the raw stalks. The cellulose nanofibers obtained by homogenization presented a size distribution between 20–200 nm, and the application of ultrasound did not show a significant effect on size (between 50 to 300 nm). Trypsin immobilized using glycidol presented an immobilization yield of 67 % and presented higher retention and enzymatic activity (1.17±0.05 U/mg protein and 44.0±2.0 %, respectively). These results show that passion fruit stalks can be successfully used as a source of cellulose nanofibers and also can be used as carriers for the immobilization of trypsin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Morton, “Fruits of Warm Climates”, Creative Resource Systems, Inc., Miami, 1987.

    Google Scholar 

  2. A. MinAgricultura, Evaluaciones Agropecuarias Municipales, EVA, 2016. http://www.agronet.gov.co/estadistica/Paginas/default.aspx (Accessed December 1, 2019).

  3. H. P. S. A. Khalil, Y. Davoudpour, M. N. Islam, A. Mustapha, K. Sudesh, R. Dungani, and M. Jawaid, Carbohydr. Polym., 99, 649 (2014).

    Article  PubMed  CAS  Google Scholar 

  4. H. P. S. A. Khalil, Y. Davoudpour, C. K. Saurabh, M. S. Hossain, A. S. Adnan, R. Dungani, M. T. Paridah, M. Z. Islam Sarker, M. N. Fazita, M. Syakir, and M. K. M. Haafiz, Renewable Sustainable Energy Rev., 64, 823 (2016).

    Article  CAS  Google Scholar 

  5. S. Beck, J. Bouchard, and R. Berry, Biomacromolecules, 12, 167 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. M. Nogi, S. Iwamoto, A. N. Nakagaito, and H. Yano, Adv. Mater., 21, 1595 (2009).

    Article  CAS  Google Scholar 

  7. R. J. Moon, A. Martini, J. Nairn, J. Simonsen, and J. Youngblood, Chem. Soc. Rev., 40, 3941 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. H. Fukuzumi, T. Saito, T. Iwata, Y. Kumamoto, and A. Isogai, Biomacromolecules, 10, 162 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. C. Mateo, J. M. Palomo, G. Fernandez-lorente, J. M. Guisan, and R. Fernandez-lafuente, Enzyme Microb. Technol., 40, 1451 (2007).

    Article  CAS  Google Scholar 

  10. F. **, J. Wu, Z. Jia, and X. Lin, Process Biochem., 40, 2833 (2005).

    Article  CAS  Google Scholar 

  11. K. Atacan and M. Özacar, Colloids Surf B., 128, 227 (2015).

    Article  CAS  Google Scholar 

  12. J. Liu, Y. Liu, D. **, M. Meng, Y. Jiang, L. Ni, and Z. Liu, Solid State Sci., 89, 15 (2019).

    Article  CAS  Google Scholar 

  13. R. A. Sheldon and J. M. Woodley, Chem. Rev., 118, 801 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. S. Sulaiman, M. N. Mokhtar, M. N. Naim, A. S. Baharuddin, M. A. M. Salleh, and A. Sulaiman, Sains Malaysiana., 44, 1541 (2015).

    CAS  Google Scholar 

  15. S. F. D’souza and S. S. Godbole, J. Biochem. Biophys. Methods, 52, 59 (2002).

    Article  PubMed  Google Scholar 

  16. J. C. Santos, I. R. G. Pinto, W. Carvalho, I. M. Mancilha, M. G. Felipe, and S. S. Silva, Appl. Biochem. Biotechnol., 121–124, 673 (2005).

    Article  PubMed  Google Scholar 

  17. S. S. Silva, S. I. Mussatto, J. C. Santos, D. T. Santos, and J. Polizel, Appl. Biochem. Biotechnol., 141, 215 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. A. I. S. Brígida, A. D. T. Pinheiro, A. L. O. Ferreira, and L. R. B. Gonçalves, Appl. Biochem. Biotechnol., 146, 173 (2008).

    Article  PubMed  CAS  Google Scholar 

  19. T. C. De Souza, T. D. S. Fonseca, A. Jessyca, M. Valderez, P. Rocha, M. Carlos, D. Mattos, R. Fernandez-lafuente, L. R. B. Goncalves, and C. S. José, J. Mol. Catal. B: Enzym., 130, 58 (2016).

    Article  CAS  Google Scholar 

  20. F. M. Gomes, G. S. Silva, D. G. Pinatti, R. A. Conte, and H. F. De Castro, Appl. Biochem. Biotechnol., 121–124, 255 (2005).

    Article  PubMed  Google Scholar 

  21. A. Saeed and M. Iqbal, Biotechnol. Prog., 29, 573 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. C. Rocha, M. P. Goncalves, and J. A. Teixeira, Process Biochem., 46, 505 (2011).

    Article  CAS  Google Scholar 

  23. R. M. Rowell, R. A. Young, and J. K. Rowell, “Paper and Composites from Agro-Based Resources”, p.83, CRC Press, 1997.

  24. M. El-Sakhawy and M. L. Hassan, Carbohydr. Polym., 67, 1 (2007).

    Article  CAS  Google Scholar 

  25. M. Jonoobi, J. Harun, A. Shakeri, M. Misra, and K. Oksmand, BioResources, 4, 626 (2009).

    CAS  Google Scholar 

  26. K. Benhamou, A. Dufresne, A. Magnin, G. Mortha, and H. Kaddami, Carbohydr. Polym., 99, 74 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. L. Segal, J. J. Creely, A. Martin, and C. M. Conrad, Text. Res. J., 29, 786 (1959).

    Article  CAS  Google Scholar 

  28. I. F. Macías-Quiroga, G. I. Giraldo-Gómez, and N. R. Sanabria-González, Sci. World J., 2018, Article 5969178 (2018).

  29. A. Machado, A. P. M. Tavares, C. M. R. Rocha, R. O. Cristóvão, J. A. Teixeira, and E. A. Macedo, Process Biochem., 47, 1095 (2012).

    Article  CAS  Google Scholar 

  30. T. M. D. S. Bezerra, J. C. Bassan, V. T. D. O. Santos, A. Ferraz, and R. Monti, Process Biochem., 50, 417 (2015).

    Article  CAS  Google Scholar 

  31. J. M. Guisán, Enzyme Microb. Technol., 10, 375 (1988).

    Article  Google Scholar 

  32. C. M. R. Rocha, “Valorization of the Peptidic Fraction of Cheese Whey”, University of Minho, http://repositorium.sdum.uminho.pt/handle/1822/8109 (2008).

  33. M. Bradford, Anal. Biochem., 72, 248 (1976).

    Article  CAS  PubMed  Google Scholar 

  34. C. E. Orrego and J. S. Valencia, Bioprocess Biosyst. Eng., 32, 197 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. J. Bassan, T. de Souza Bezerra, G. Peixoto, C. da Cruz, J. Galán, A. Vaz, S. Garrido, M. Filice, and R. Monti, Materials, 9, 357 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  36. National Institutes of Health, ImageJ, 2016.

  37. L. Duan, H. Wang, and W. Yu, Adv. Mater. Res., 651, 408 (2013).

    Article  CAS  Google Scholar 

  38. C. M. Popescu, G. Singurel, M. C. Popescu, C. Vasile, D. S. Argyropoulos, and S. Willfor, Carbohydr. Polym., 77, 851 (2009).

    Article  CAS  Google Scholar 

  39. M. Kacuráková, P. Capek, V. Sasinková, N. Wellner, and A. Ebringerová, Carbohydr. Polym., 43, 195 (2000).

    Article  Google Scholar 

  40. J. P. de Oliveira, G. P. Bruni, K. O. Lima, S. L. M. El Halal, G. S. da Rosa, A. R. G. Dias, and E. da R. Zavareze, Food Chem., 221, 153 (2017).

    Article  CAS  Google Scholar 

  41. W. Chen, H. Yu, and Y. Liu, Carbohydr. Polym., 86, 453 (2011).

    Article  CAS  Google Scholar 

  42. S. L. M. El Halal, R. Colussi, V. G. Deon, V. Z. Pinto, F. A. Villanova, N. L. V. Carreño, A. R. G. Dias, and E. D. R. Zavareze, Carbohydr. Polym., 133, 644 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. C. E. Orrego, J. S. Valencia, and C. Zapata, Catal. Lett., 129, 312 (2009).

    Article  CAS  Google Scholar 

  44. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. W. Sing, Pure Appl. Chem., 87, 1051 (2015).

    Article  CAS  Google Scholar 

  45. A. Legras, A. Kondor, M. T. Heitzmann, and R. W. Truss, J. Chromatogr. A., 1425, 273 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Y. Liu and J. Y. Chen, J. Bioact. Compat. Polym., 31, 553 (2016).

    Article  CAS  Google Scholar 

  47. S. Sulaiman, M. N. Mokhtar, M. N. Naim, A. S. Baharuddin, and A. Sulaiman, Appl. Biochem. Biotechnol., 175, 1817 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. C. Fritz, B. Jeuck, C. Salas, R. Gonzalez, H. Jameel, and O. J. Rojas, “Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials”, 1st ed. (O. J. Rojas Ed.), pp.207–224, Springer, 2015.

  49. T. Nikolic, M. Kostic, J. Praskalo, B. Pejic, Z. Petronijevic, and P. Skundric, Carbohydr. Polym., 82, 976 (2010).

    Article  CAS  Google Scholar 

  50. F. J. Díaz and K. J. Blakus Jr, J. Mol. Catal. B: Enzym., 2, 115 (1996).

    Article  Google Scholar 

  51. J. A. Silva, G. P. Macedo, D. S. Rodrigues, R. L. C. Giordano, and L. R. B. Goncalves, Biochem. Eng. J., 60, 16 (2012).

    Article  CAS  Google Scholar 

  52. H. B. Gonçalves, J. A. Jorge, and L. H. S. Guimarães, Food Sci. Biotechnol., 24, 1429 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of Universidad Nacional de Colombia (Hermes code project 34573), COLCIENCIAS call 727–2015 National Doctorates. FONTAGRO (ATN/RF-16111-RG Productividad y Competitividad Frutícola Andina), and Erasmus+Programme Key Action 1. This work was also supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of the UID/BIO/04469/2020 unit and by the BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 — Programa Operacional Regional do Norte.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos E. Orrego.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez-Restrepo, Y.A., Rocha, C.M.R., Teixeira, J.A. et al. Valorization of Passion Fruit Stalk by the Preparation of Cellulose Nanofibers and Immobilization of Trypsin. Fibers Polym 21, 2807–2816 (2020). https://doi.org/10.1007/s12221-020-1342-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-1342-2

Keywords

Navigation