Log in

Novel Blowspun Nanobioactive Glass Doped Polycaprolactone/Silk Fibroin Composite Nanofibrous Scaffold with Enhanced Osteogenic Property for Bone Tissue Engineering

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Blowspinning provides an efficient and easier way of nanofibers preparation that mimics the structure of native extracellular matrix (ECM) and can be applied as scaffolds to regenerate bone tissue at the defect site. The present study reports fabrication of nanofibrous scaffold with novel polymeric combination using polycaprolactone (PCL) and silk fibroin (SF), doped with nanobioactive glass (nBS). The PCL/SF nanofibers of average diameter 570 nm were obtained by blowspinning technique, and BS nanoparticles of 80±20 nm were produced by sol-gel method followed by ball milling. On nBS do**, the resulting 3D composite matrix exhibited excellent surface property, 85–86 % porosity, 2.2 MPa mechanical strength and were effectively colonized by umbilical cord blood derived human mesenchymal stem cells (hMSCs). The nanofibrous-composite scaffolds (PCL/SF/nBS) were superior to PCL and PCL/SF scaffolds in facilitating cell attachment, metabolic activity and distribution. The PCL/SF/nBS scaffolds promoted osteogenic differentiation of hMSCs as evident by immunofluorescence of Runt-related transcription factor 2 (RUNX2) and osteoclacin (OCN) in cell ECM, and upregulation of alkaline phosphatase, RUNX2, OCN and osteopontin genes. Incorporation of nBS into the nanofibrous structure resulted in enhanced biomineralization, thereby improving osteogenic differentiation potential. Thus blowspun PCL/SF/nBS scaffolds were demonstrated to be suitable platform for bone tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. Amini, C. T. Laurencin, and S. P. Nukavarapu, Crit. Rev. Biomed. Eng., 40, 363 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. A. J. Salgado, O. P. Coutinho, and R. L. Reis, Macromol. Biosci., 4, 743 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. S. Bose, M. Roy, and A. Bandyopadhyay, Trends Biotechnol., 30, 546 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. G. **, M. P. Prabhakaran, and S. Ramakrishna, Acta Biomater., 7, 3113 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, J. Biomed. Mater. Res., 60, 613 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. T. Li, X. Ding, L. Tian, and S. Ramakrishna, J. Mater. Sci., 52, 10661 (2017).

    Article  CAS  Google Scholar 

  7. M. Kouhi, M. Fathi, M. P. Prabhakaran, M. Shamanian, and S. Ramakrishna, Appl. Surf. Sci., doi:10.1016/j.apsusc. 2018.06.239 (2018).

    Google Scholar 

  8. C. Bilbao-sainz, B. Chiou, D. Valenzuela-medina, W. Du, K. S. Greforski, T. G. Williams, D. F. Wood, G. M. Glenn, and W. J. Orts, Eur. Polym. J., 54, 1 (2014).

    Article  CAS  Google Scholar 

  9. M. A. Brennan, A. Renaud, A. Gamblin, C. D. Arros, S. Nedellec, V. Trichet, and P. Layrolle, Biomed. Mater., 10, 1 (2015).

    Article  CAS  Google Scholar 

  10. J. Sohier, P. Corre, C. Perret, P. Pilet, and P. Weiss, Tissue Eng. Part C Methods, 20, 285 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. W. Tutak, S. Sarkar, S. Lin-Gibson, T. M. Farooque, G. Jyotsnendu, D. Wang, J. Kohn, D. Bolikal, and C. G. Simon Jr, Biomaterials, 34, 2389 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. S. Srinivasan, S. S. Chhatre, J. M. Mabry, R. E. Cohen, and G. H. McKinley, Polymer, 52, 3209 (2011).

    Article  CAS  Google Scholar 

  13. A. M. Behrens, B. J. Casey, M. J. Sikorski, K. L. Wu, W. Tutak, A. D. Sandler, and P. Kofinas, ACS Macro Lett., 3, 249 (2014).

    Article  CAS  Google Scholar 

  14. J. Johnson, A. Niehaus, S. Nichols, D. Lee, J. Koepsel, D. Anderson, and J. Lannutti, J. Biomater. Sci. Polym. Ed., 20, 467 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. H. Yoshimoto, Y. M. Shin, H. Terai, and J. P. Vacanti, Biomaterials, 24, 2077 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. T. Xu, Q. Yao, J. M. Miszuk, H. J. Sanyour, Z. Hong, H. Sun, and H. Fong, Colloids Surfaces B Biointerfaces, 171, 31 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Y. Zhu, C. Gao, and J. Shen, Biomaterials, 23, 4889 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. J. M. Miszuk, T. Xu, Q. Yao, F. Fang, J. D. Childs, Z. Hong, J. Tao, H. Fong, and H. Sun, Appl. Mater Today, 10, 194 (2018).

    Article  PubMed  Google Scholar 

  19. T. Xu, Z. Liang, B. Ding, Q. Feng, and H. Fong, Polymer (Guildf), 151, 299 (2018).

    Article  CAS  Google Scholar 

  20. B. B. Mandal and S. C. Kundu, Biomaterials, 30, 5019 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. N. Bhardwaj and S. C. Kundu, Biomaterials, 33, 2848 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. B. Kundu, R. Rajkhowa, S. C. Kundu, and X. Wang, Adv. Drug Deliv. Rev., 65, 457 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. S. Saha, B. Kundu, J. Kirkham, D. Wood, S. C. Kundu, and X. B. Yang, PLoS One, 8, e80004 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. M. Wiens, X. Wang, H. C. Schröder, U. Kolb, U. Schlobmacher, H. Ushijima, and W. E. G. Muller, Biomaterials, 31, 7716 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. F. Natalio, T. Link, W. E. G. Müller, H. C. Schroder, F. Cui, X. Wang, and M. Wiens, Acta Biomater., 6, 3720 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. S. I. Roohani-esfahani, S. Nouri-khorasani, Z. F. Lu, R. C. Appleyard, and H. Zreiqat, Acta Biomater., 7, 1307 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. G. M. Luz and J. F. Mano, Compos. Sci. Technol., 70, 1777 (2010).

    Article  CAS  Google Scholar 

  28. M. Dominici, K. L. Blanc, I. Mueller, I. Slaper-Cortenbach, F. C. Marini, D. S. Krause, R. J. Deans, A. Keating, D. J. Prockop, and E. M. Horwitz, Cytotherapy, 8, 315 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. H. Pirayesh and J. A. Nychka, J. Am. Ceram. Soc., 96, 1643 (2013).

    Article  CAS  Google Scholar 

  30. P. Agrawal, K. Pramanik, A. Biswas, and R. K. Patra, J. Biomed. Mater. Res. Part A, 106, 397 (2018).

    Article  CAS  Google Scholar 

  31. P. Agrawal, K. Pramanik, V. Vishwanath, A. Biswas, A. Bissoyi, and P. K. Patra, J. Biomed. Mater. Res. -Part B Appl. Biomater. doi:10.1002/jbm.b.34074 (2018).

    Google Scholar 

  32. A. El-Fiqi and H.-W. Kim, RSC Adv., 4, doi:10.1039/c3ra45858j (2014).

  33. P. Agrawal and K. Pramanik, Tissue Eng. Regen. Med., 13, 485 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. H. Homayoni, S. A. H. Ravandi, and M. Valizadeh, Carbohydr. Polym., 77, 656 (2009).

    Article  CAS  Google Scholar 

  35. S. N. Alhosseini, F. Moztarzadeh, M. Mozafari, S. Asgari, M. Dodel, A. Samadikuchaksaraei, S. Kargozar, and N. Jalali, Int. J. Nanomed., 7, 25 (2012).

    CAS  Google Scholar 

  36. S. Gautam, C. F. Chou, A. K. Dinda, P. D. Potdar, and N. C. Mishra, Mater. Sci. Eng. C, 34, 402 (2014).

    Article  CAS  Google Scholar 

  37. R. Nazrov, H.-J. **, and D. L. Kaplan, Biomacromolecules, 5, 718 (2004).

    Article  CAS  Google Scholar 

  38. B. N. Singh, N. N. Panda, R. Mund, and K. Pramanik, Carbohydr. Polym., 151, 335 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. K.-W. Lee, S. Wang, M. J. Yaszemski, and L. Lu, Biomacromolecules, 11, 682 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. N. N. Panda, A. Biswas, K. Pramanik, and S. Jonnalagadda, J. Biomed. Mater. Res. - Part B Appl. Biomater., 103, 971 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. S. Heinemann, C. Heinemann, M. Jäger, J. Neunzehn, H. P. Wiesmann, and T. Hanke, ACS Appl. Mater. Interfaces, 3, 4323 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. J. A. Sowjanya, J. Singh, T. Mohita, S. Sarvanan, A. Moorthi, N. Srinivasan, and N. Selvamurugan, Colloids Surfaces B Biointerfaces, 109, 294 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. T. Xu, J. M. Miszuk, Y. Zhao, H. Sun, and H. Fong, Adv Healthc Mater., 4, 2238 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Z. X. Meng, W. Zheng, L. Li, and Y. F. Zheng, Mater. Sci. Eng. C, 30, 1014 (2010).

    Article  CAS  Google Scholar 

  45. A. Haider, S. Kwak, K. C. Gupta, and I. Kang, J. Nanomater., 2015, doi:10.1155/2015/832762 (2015).

  46. Y. Zheng, J. Miao, N. Maeda, D. Frey, R. J. Linhardt, and T. J. Simmons, J. Mater. Chem. A, 2, 15029 (2014).

    Article  CAS  Google Scholar 

  47. S. Zohoori, L. Karimi, and S. Ayaziyazdi, J. Ind. Eng. Chem., 20, doi:10.1016/j.jiec.2013.10.062 (2014).

  48. N. M. Bedford and A. J. Steckl, ACS Appl. Mater. Interfaces, 2, doi:10.1021/am1005089 (2010).

  49. K. Rezwan, Q. Z. Chen, J. J. Blaker, and A. R. Boccaccini, Biomaterials, 27, 3413 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. M. Wiens, T. A. Elkhooly, H. C. Schröder, T. H. A. Mohamed, and W. E. G. Müller, Acta Biomater., 10, 4456 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. K. C. Kavya, R. Jayakumar, S. Nair, and K. P. Chennazhi, Int. J. Biol. Macromol., 59, 255 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Q. Yao, J. G. L. Cosme, T. Xu, J. M. Miszuk, P. H. S. Picciani, H. Fong, and H. Sun, Biomaterials, 115, 115 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. C. L. Norton, U.S. Patent, 2,048,651 (1936).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Pramanik.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, P., Pramanik, K. & Bissoyi, A. Novel Blowspun Nanobioactive Glass Doped Polycaprolactone/Silk Fibroin Composite Nanofibrous Scaffold with Enhanced Osteogenic Property for Bone Tissue Engineering. Fibers Polym 19, 2465–2477 (2018). https://doi.org/10.1007/s12221-018-8601-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-8601-5

Keywords

Navigation