Log in

Effect of Gravity Orientation on Flickering Characteristics of Premixed Conical Flame

  • Research
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

Experimental and numerical simulation methods were employed to investigate the effect of gravity orientation on the dynamics of premixed conical flames. The study focused on a typical propane-air flame established on a Bunsen burner, under normal gravity (+ g), reverse gravity (-g), and transverse gravity (⊥g). In the initial phase of the research, flame shapes were examined using flame chemiluminescence imaging. Result shows that gravity orientation has a slight impact on the flame height, and buoyancy caused flame asymmetry in ⊥g case is first discovered. In addition, flame flickering frequencies were collected through heat release signal experiments, and a wide range of data is acquired. Though being affected by the same pattern by equivalence ratio and Reynolds number, the frequencies in ⊥g case are generally lower than those in + g case. Based on this, the research also obtained the new empirical correlation for ⊥g case. For clearer explanations of the flame behavior under different gravity orientations, velocity fields were visualization using Particle Image Velocimetry (PIV) experiments and Direct Numerical Simulation (DNS). Results indicated that the gravity orientation mainly influences the flame through effects on shear layer between ambient air and burnt gas, which cause different forms of K-H instability and vortex shedding motions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Abbreviations

PIV :

Particle image velocimetry

CFD:

Computational fluid dynamics

PMT:

Photomultiplier

DMD:

Dynamic mode Decomposition

BSL:

Burnt gas and the surrounding gas shear layer

β:

Half angle of the conical flame tip

Qair :

Photomultiplier

Q C3H8 :

Flow rate of propane

U:

Mean inlet velocity

φ:

Equivalence ratio

τ:

Thermal expansion rate

Re:

Reynold number

St :

Strouhal number

Ri :

Richardson number

Gr :

Grashoff number

References

  • Al-Ammar, K., Agrawal, A.K., Gollahalli, S.R., et al.: Application of rainbow schlieren deflectometry for concentration measurements in an axissymmetric helium jet. Exp. Fluids 25(2), 89–95 (1998)

    Article  CAS  Google Scholar 

  • Antares Development Team. Antares Documentation Release 1.15.0. 2012–2020

  • Baillot, F., Durox, D., Prud’Homme, R.: Experimental and theoretical study of a premixed vibrating flame. Combust. Flame 88(2), 149–168 (1992)

    Article  ADS  CAS  Google Scholar 

  • Ballantyne, A., Bray, K.N.C.: Investigations into the structure of jet diffusion flames using time-resolved optical measuring techniques[C]//Symposium (International) on Combustion. Elsevier 16(1), 777–787 (1977)

    Google Scholar 

  • Bédat, B., Cheng, R.K.: Effects of buoyancy on premixed flame stabilization. Combust. Flame 107(1–2), 13–26 (1996)

    Article  ADS  Google Scholar 

  • Bedat, B., Kostiuk, L.W., Cheng, R.K.: Coupling of wrinkled laminar flames with gravity[C]//NASA. Lewis Research Center, The 3rd International Microgravity Combustion Workshop. (1995)

  • Brötz, W., Schönbucher, A., Banhardt, V., et al.: Periodische und statistische Eigenschaften kohärenter Kurzzeit‐Strukturen in Tankflammen. Berichte der Bunsengesellschaft für physikalische Chemie 87(11):997–1004 (1983)

  • Buckmaster, J., Peters, N.: The infinite candle and its stability-a paradigm for flickering diffusion flames[C]//Symposium (International) on Combustion. Elsevier 21(1), 1829–1836 (1988)

    Google Scholar 

  • Charest, M.R.J., Groth, C.P.T., Gülder, Ö.L.: Effects of gravity and pressure on laminar coflow methane–air diffusion flames at pressures from 1 to 60 atmospheres. Combust. Flame 158(5), 860–875 (2011)

    Article  ADS  CAS  Google Scholar 

  • Cheng, R.K., Bédat, B., Kostiuk, L.W.: Effects of buoyancy on lean premixed V-flames Part I: laminar and turbulent flame structures. Combust. Flame 116(3), 360–375 (1999a)

    Article  ADS  CAS  Google Scholar 

  • Cheng, R.K., Bédat, B., Yegian, D.T.: Effects of buoyancy on lean premixed v-flames, Part II. Velocity Statistics in Normal and Microgravity. (1999)

  • Durao, D.F.G., Whitelaw, J.H.: Instantaneous velocity and temperature measurements in oscillating diffusion flames. Proceedings of the Royal Society of London. A. Mathematical Phys. Sci. 338(1615):479–501 (1974)

  • Durox, D., Baillot, F., Scouflaire, P., et al.: Some effects of gravity on the behavior of premixed flames. Combust. Flame 82(1), 66–74 (1990)

    Article  ADS  CAS  Google Scholar 

  • Gotoda, H., Ueda, T., Shepherd, I.G., et al.: Flame flickering frequency on a rotating Bunsen burner. Chem. Eng. Sci. 62(6), 1753–1759 (2007)

    Article  CAS  Google Scholar 

  • Hegde Nyma, U., Zhou, L., Bahadori, M.Y.: The transition to turbulence of microgravity gas jet diffusion flames. Combust. Sci. Technol. 102(1–6), 95–113 (1994)

    Article  Google Scholar 

  • Kostiuk, L.W., Cheng, R.K.: Imaging of premixed flames in microgravity. Exp. Fluids 18(1–2), 59–68 (1994)

    Article  CAS  Google Scholar 

  • Kostiuk, L.W., Cheng, R.K.: The coupling of conical wrinkled laminar flames with gravity. Combust. Flame 103(1–2), 27–40 (1995)

    Article  ADS  CAS  Google Scholar 

  • Krikunova, A.I., Son, E.E.: Effect of gravity on premixed methane–air flames. High Temp. 56, 84–91 (2018)

    Article  CAS  Google Scholar 

  • Maas, U.: Unsteady Combustor Physics. (2014)

  • Maruta, K., Yoshida, M., Guo, H., et al.: Extinction of low-stretched diffusion flame in microgravity. Combust. Flame 112(1–2), 181–187 (1998)

    Article  ADS  CAS  Google Scholar 

  • Ronney, P.D., Wachman, H.Y.: Effect of gravity on laminar premixed gas combustion I: Flammability limits and burning velocities. Combust. Flame 62(2), 107–119 (1985)

    Article  ADS  CAS  Google Scholar 

  • Ronney, P.D.: Effect of gravity on laminar premixed gas combustion II: ignition and extinction phenomenon. Combust. Flame 62(2), 121–133 (1985)

    Article  ADS  CAS  Google Scholar 

  • Shepherd, I.G., Cheng, R.K., Day, M.S.: The dynamics of flame flicker in conical premixed flames: an experimental and numerical study. Lawrence Berkeley Nat. Lab. (2005)

  • Takahashi, F., Katta, V.R.: Further studies of the reaction kernel structure and stabilization of jet diffusion flames. Proc. Combust. Inst. 30(1), 383–390 (2005)

    Article  Google Scholar 

  • Thielicke, W., Sonntag, R.: Particle Image Velocimetry for MATLAB: Accuracy and Enhanced Algorithms in PIVlab, J. Open Res. Softw. 9 (2021)

  • Toong, T.Y.: Mechanisms of combustion instability[C]//Symposium (International) on Combustion. Elsevier 10(1), 1301–1313 (1965)

    Google Scholar 

  • Walsh, K.T., Fielding, J., Smooke, M.D., et al.: Experimental and computational study of temperature, species, and soot in buoyant and non-buoyant coflow laminar diffusion flames. Proc. Combust. Inst. 28(2), 1973–1979 (2000)

    Article  CAS  Google Scholar 

  • Yao, Y., Fang Yuanqi, Hu., Keqi, et al.: Experimental diagnosis of conical premixed flame plume shedding process. Propulsion Technology 43(1), 8 (2022)

    Google Scholar 

Download references

Funding

National Key Research and Development Program of China, 2021YFA0716202.

Author information

Authors and Affiliations

Authors

Contributions

Chenghao Qian: Investigation (lead); Formal analysis (lead); Writing – original draft (lead). Yao Yang: Investigation (equal); Methodology (equal); Writing – review & editing (lead). Gaofeng Wang*: Funding acquisition (lead); Methodology (equal); Formal analysis (equal); Validation (equal). Anastasia Krikunova: Methodology (equal); Validation (equal). Keqi Hu: Investigation (supporting); Methodology (supporting).

Corresponding author

Correspondence to Gaofeng Wang.

Ethics declarations

Ethical Approval

This research does not include any material that require ethical approval.

Competing Interests

No, I declare that the authors have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Dual Publication

The results/data/figures in this manuscript have not been published elsewhere, nor are they under consideration (from you or one of your Contributing Authors) by another publisher.

Authorship

I have read the Nature Portfolio journal policies on author responsibilities and submit this manuscript in accordance with those policies.

Third Party Material

All of the material is owned by the authors and/or no permissions are required.

Author Statement

The authors all consent to participate and publish this paper.

Transformative

I confirm that I understand journal Microgravity Science and Technology is a transformative journal. When research is accepted for publication, there is a choice to publish using either immediate gold open access or the traditional publishing route.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table PMT experimental conditions

U

(m/s)

φ

Re

QC3H8 (L/min)

Qair

(L/min)

0.90

0.80

609

0.124

3.703

0.90

0.90

609

0.139

3.688

0.90

1.00

609

0.154

3.673

0.90

1.20

609

0.184

3.644

0.90

1.40

609

0.213

3.615

1.10

0.80

745

0.152

4.526

1.10

0.90

745

0.170

4.508

1.10

1.00

745

0.189

4.489

1.10

1.20

745

0.225

4.454

1.10

1.40

745

0.260

4.418

1.25

0.80

846

0.173

5.143

1.25

0.90

846

0.194

5.122

1.25

0.95

846

0.204

5.112

1.25

1.00

846

0.214

5.102

1.25

1.20

846

0.255

5.061

1.25

1.40

846

0.295

5.021

1.40

0.80

948

0.194

5.760

1.40

0.90

948

0.217

5.737

1.40

1.00

948

0.240

5.714

1.40

1.20

948

0.286

5.668

1.40

1.40

948

0.331

5.623

1.60

0.80

1083

0.221

6.583

1.60

0.90

1083

0.248

6.557

1.60

1.00

1083

0.274

6.530

1.60

1.20

1083

0.327

6.478

1.60

1.40

1083

0.378

6.426

1.80

0.80

1219

0.249

7.406

1.80

0.90

1219

0.279

7.376

1.80

1.00

1219

0.309

7.346

1.80

1.20

1219

0.367

7.288

1.80

1.40

1219

0.425

7.230

2.00

0.80

1354

0.277

8.229

2.00

0.90

1354

0.310

8.196

2.00

1.00

1354

0.343

8.163

2.00

1.20

1354

0.408

8.097

2.00

1.40

1354

0.473

8.033

2.20

0.80

1490

0.304

9.052

2.20

0.90

1490

0.341

9.015

2.20

1.00

1490

0.377

8.979

2.20

1.20

1490

0.449

8.907

2.20

1.40

1490

0.520

8.836

2.40

0.80

1625

0.332

9.875

2.40

0.90

1625

0.372

9.835

2.40

1.00

1625

0.412

9.795

2.40

1.20

1625

0.490

9.717

2.40

1.40

1625

0.567

9.640

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, C., Yang, Y., Wang, G. et al. Effect of Gravity Orientation on Flickering Characteristics of Premixed Conical Flame. Microgravity Sci. Technol. 36, 3 (2024). https://doi.org/10.1007/s12217-023-10088-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12217-023-10088-3

Keywords

Navigation