Log in

Metal Oxide/Nitrogen-Doped Carbon Catalysts Enables Highly Efficient CO2 Electroreduction

  • Research Article
  • Published:
Transactions of Tian** University Aims and scope Submit manuscript

Abstract

The metal oxide/nitrogen-doped carbon (NC) compounds zirconium oxide/NC (ZrO2/NC) and cerium oxide/NC (CeO2/NC) were synthesized via the pyrolysis of polyaniline on the metal oxide surface. The characterization of the ZrO2/NC and CeO2/NC catalysts showed more active CO2 reduction reaction activity than that of NC catalyst without metal oxide. Gas chromatography analysis revealed that CO and H2 were the primary products, and no liquid-phase products were detected via proton nuclear magnetic resonance spectroscopy or high-performance liquid chromatography. The maximum Faraday efficiency of ZrO2/NC reached 90% at − 0.73 V (vs. RHE), with the current density of CO at 5.5 mA/cm2; this Faraday efficiency value was higher than that of NC (41%), with the current density of CO at 3.1 mA/cm2. The interaction between the metal oxide and carbon allowed the efficient formation of defect sites, especially imine-type nitrogen, strengthening the adsorption of the key reaction intermediate CO2•− and thus promoting the CO2 reduction reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yan CC, Li HB, Ye YF et al (2018) Coordinatively unsaturated nickel–nitrogen sites towards selective and high-rate CO2 electroreduction. Energy Environ Sci 11(5):1204–1210

    Article  Google Scholar 

  2. Zhu DD, Liu JL, Qiao SZ (2016) Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv Mater 28(18):3423–3452

    Article  Google Scholar 

  3. Hamann TW, Jensen RA, Martinson ABF et al (2008) Advancing beyond current generation dye-sensitized solar cells. Energy Environ Sci 1(1):66

    Article  Google Scholar 

  4. He X, Qiu LQ, Wang WJ et al (2020) Photocarboxylation with CO2: an appealing and sustainable strategy for CO2 fixation. Green Chem 22(21):7301–7320

    Article  Google Scholar 

  5. Li JS, Tian Y, Zhou YN et al (2020) Abiotic-biological hybrid systems for CO2 conversion to value-added chemicals and fuels. Trans Tian** Univ 26(4):237–247

    Article  Google Scholar 

  6. Chang Q, Kim J, Lee JH et al (2020) Boosting activity and selectivity of CO2 electroreduction by pre-hydridizing Pd nanocubes. Small 16(49):2005305

    Article  Google Scholar 

  7. **e H, Wan YY, Wang XM et al (2021) Boosting Pd-catalysis for electrochemical CO2 reduction to CO on Bi-Pd single atom alloy nanodendrites. Appl Catal B Environ 289:119783

    Article  Google Scholar 

  8. Ma C, Hou PF, Wang XP et al (2019) Carbon nanotubes with rich pyridinic nitrogen for gas phase CO2 electroreduction. Appl Catal B Environ 250:347–354

    Article  Google Scholar 

  9. Hou PF, Song WL, Wang XP et al (2020) Well-defined single-atom cobalt catalyst for electrocatalytic flue gas CO2 reduction. Small 16(24):2001896

    Article  Google Scholar 

  10. Yadav A, Kumar H, Sharma R et al (2021) Influence of polyaniline on the photocatalytic properties of metal nanocomposites: a review. Colloid Interface Sci 40:100339

    Article  Google Scholar 

  11. Mohamad AIZ, Wadi HS, Gan SN et al (2018) Polyaniline (PAni) optical sensor in chloroform detection. Sensor Actuat B Chem 261:97–105

    Article  Google Scholar 

  12. Li YQ, Mao YL, **ao C et al (2020) Flexible pH sensor based on a conductive PANI membrane for pH monitoring. RSC Adv 10(1):21–28

    Article  Google Scholar 

  13. Ahmad AL, Farooqui UR, Hamid NA (2018) Porous (PVDF-HFP/PANI/GO) ternary hybrid polymer electrolyte membranes for lithium-ion batteries. RSC Adv 8(45):25725–25733

    Article  Google Scholar 

  14. Li LM, Liu EH, Shen HJ et al (2011) Charge storage performance of doped carbons prepared from polyaniline for supercapacitors. J Solid State Electrochem 15(1):175–182

    Article  Google Scholar 

  15. Yan J, Wei T, Qiao WM et al (2010) A high-performance carbon derived from polyaniline for supercapacitors. Electrochem Commun 12(10):1279–1282

    Article  Google Scholar 

  16. Yin YL, Gao Y, Zhang YL et al (2019) Synthesis of honeycomb-like hierarchical porous carbon via molten salt pyrolysis in a novel sequencing integration system for high-performance supercapacitors. Microporous Mesoporous Mater 278:195–205

    Article  Google Scholar 

  17. Taheri NN, Ramezanzadeh B, Mahdavian M (2019) Application of layer-by-layer assembled graphene oxide nanosheets/polyaniline/zinc cations for construction of an effective epoxy coating anti-corrosion system. J Alloy Compd 800:532–549

    Article  Google Scholar 

  18. Li F, Li GX, Zeng J et al (2014) Molybdate-doped copolymer coatings for corrosion prevention of stainless steel. J Appl Polym Sci 131(16):40602

    Article  Google Scholar 

  19. Wang H, Jia J, Song PF et al (2017) Efficient electrocatalytic reduction of CO2 by nitrogen-doped nanoporous carbon/carbon nanotube membranes: a step towards the electrochemical CO2 refinery. Angew Chem 129(27):7955–7960

    Article  Google Scholar 

  20. Trchová M, Stejskal J (2011) Polyaniline: the infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical Report). Pure Appl Chem 83(10):1803–1817

    Article  Google Scholar 

  21. Kim JH, Woo H, Choi J et al (2017) CO2 electroreduction on Au/TiC: enhanced activity due to metal–support interaction. ACS Catal 7(3):2101–2106

    Article  Google Scholar 

  22. Han H, ** S, Park S et al (2021) Plasma-induced oxygen vacancies in amorphous MnOx boost catalytic performance for electrochemical CO2 reduction. Nano Energy 79:105492

    Article  Google Scholar 

  23. Yuan LP, Jiang WJ, Liu XL et al (2020) Molecularly engineered strong metal oxide–support interaction enables highly efficient and stable CO2 electroreduction. ACS Catal 10(22):13227–13235

    Article  Google Scholar 

  24. Hao LD, Sun ZY (2021) Metal oxide-based materials for electrochemical CO2 reduction. Acta Phys Chimica Sin 37(7):2009033

    Google Scholar 

  25. Tauster SJ, Fung SC, Garten RL (1978) Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J Am Chem Soc 100(1):170–175

    Article  Google Scholar 

  26. Tauster SJ (1987) Strong metal-support interactions. Acc Chem Res 20(11):389–394

    Article  Google Scholar 

  27. Tao HC, Choi C, Ding LX et al (2019) Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 5(1):204–214

    Article  Google Scholar 

  28. Han ZS, Choi C, Tao HC et al (2018) Tuning the Pd-catalyzed electroreduction of CO2–CO with reduced overpotential. Catal Sci Technol 8(15):3894–3900

    Article  Google Scholar 

  29. Kumar B, Asadi M, Pisasale D et al (2013) Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat Commun 4:2819

    Article  Google Scholar 

  30. Wu JJ, Sharifi T, Gao Y et al (2019) Emerging carbon-based heterogeneous catalysts for electrochemical reduction of carbon dioxide into value-added chemicals. Adv Mater 31(13):1804257

    Article  Google Scholar 

  31. Chu J, Li X, Li QQ et al (2020) Hydrothermal synthesis of PANI nanowires for high-performance supercapacitor. High Perform Polym 32(3):258–267

    Article  Google Scholar 

  32. de Castro SI, Sigoli FA, Mazali IO (2017) Reversible oxygen vacancy generation on pure CeO2 nanorods evaluated by in situ Raman spectroscopy. J Phys Chem C 121(23):12928–12935

    Article  Google Scholar 

  33. Villa-Aleman E, Houk AL, Dick DD et al (2020) Hyper-Raman spectroscopy of CeO2. J Raman Spectrosc 51(7):1260–1263

    Article  Google Scholar 

  34. Ji P, Wang Z, Shang XH et al (2019) Direct observation of enhanced Raman scattering on nano-sized ZrO2 substrate: charge-transfer contribution. Front Chem 7:245

    Article  Google Scholar 

  35. Silge A, Bocklitz T, Ossig R et al (2016) The interaction of an amino-modified ZrO2 nanomaterial with macrophages–an in situ investigation by Raman microspectroscopy. Anal Bioanal Chem 408(21):5935–5943

    Article  Google Scholar 

  36. Melánová K, Beneš L, Zima V et al (2019) Microcomposites of zirconium phosphonates with a conducting polymer, polyaniline: preparation, spectroscopic study and humidity sensing. J Solid State Chem 276:285–293

    Article  Google Scholar 

  37. Rajagopal RV, Venkata PC (2018) Surface chemical states, electrical and carrier transport properties of Au/ZrO2/n–GaN MIS junction with a high-k ZrO2 as an insulating layer. Mater Sci Eng: B 231:74–80

    Article  Google Scholar 

  38. Li WH, Nie XW, Jiang X et al (2018) ZrO2 support imparts superior activity and stability of Co catalysts for CO2 methanation. Appl Catal B Environ 220:397–408

    Article  Google Scholar 

  39. Holgado JP, Alvarez R, Munuera G (2000) Study of CeO2 XPS spectra by factor analysis: reduction of CeO2. Appl Surf Sci 161(3–4):301–315

    Article  Google Scholar 

  40. Yang CW, Bebensee F, Chen J et al (2017) Carbon dioxide adsorption on CeO2(110): an XPS and NEXAFS study. ChemPhysChem 18(14):1874–1880

    Article  Google Scholar 

  41. Zhang K, Zhang LL, Zhao XS et al (2010) Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem Mater 22(4):1392–1401

    Article  Google Scholar 

  42. Chen SH, Zhao XL, **e FZ et al (2020) Efficient charge separation between ZnIn2S4 nanoparticles and polyaniline nanorods for nitrogen photofixation. New J Chem 44(18):7350–7356

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Key R&D Program of China (No. 2016YFB0600901) and Changyi Hydrogen Industrial Technology Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, H., Cheng, Y. & Kang, P. Metal Oxide/Nitrogen-Doped Carbon Catalysts Enables Highly Efficient CO2 Electroreduction. Trans. Tian** Univ. 27, 269–277 (2021). https://doi.org/10.1007/s12209-021-00287-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-021-00287-7

Keywords

Navigation