Log in

Inkjet printing for electroluminescent devices: emissive materials, film formation, and display prototypes

  • Review Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

Inkjet printing (IJP) is a versatile technique for realizing high-accuracy patterns in a cost-effective manner. It is considered to be one of the most promising candidates to replace the expensive thermal evaporation technique, which is hindered by the difficulty of fabricating low-cost, large electroluminescent devices, such as organic lightemitting diodes (OLEDs) and quantum dot light-emitting diodes (QLEDs). In this invited review, we first introduce the recent progress of some printable emissive materials, including polymers, small molecules, and inorganic colloidal quantum dot emitters in OLEDs and QLEDs. Subsequently, we focus on the key factors that influence film formation. By exploring stable ink formulation, selecting print parameters, and implementing droplet deposition control, a uniform film can be obtained, which in turn improves the device performance. Finally, a series of impressive inkjet-printed OLEDs and QLEDs prototype display panels are summarized, suggesting a promising future for IJP in the fabrication of large and high-resolution flat panel displays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blasse G, Bril A. A new phosphor for flying-spot cathode-ray tubes for color television: yellow-emitting Y3Al5O12–Ce3+. Applied Physics Letters, 1967, 11(2): 53–55

    Article  Google Scholar 

  2. Brody T P, Asars J A, Dixon G D A. 6 × 6 inch 20 lines-per-inch liquid-crystal display panel. IEEE Transactions on Electron Devices, 1973, 20(11): 995–1001

    Article  Google Scholar 

  3. Tang C W, VanSlyke S A. Organic electroluminescent diodes. Applied Physics Letters, 1987, 51(12): 913–915

    Article  Google Scholar 

  4. Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B. Light-emitting diodes based on conjugated polymers. Nature, 1990, 347(6293): 539–541

    Article  Google Scholar 

  5. Colvin V L, Schlamp M C, Alivisatos A P. Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature, 1994, 370(6488): 354–357

    Article  Google Scholar 

  6. Baldo M A, O’brien D F, You Y, Shoustikov A, Sibley S, Thompson M E, Forrest S R. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998, 395(6698): 151–154

    Article  Google Scholar 

  7. Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 2012, 492(7428): 234–238

    Article  Google Scholar 

  8. Gather M C, Köhnen A, Meerholz K. White organic light-emitting diodes. Advanced Materials, 2011, 23(2): 233–248

    Article  Google Scholar 

  9. Granlund T, Nyberg T, Roman L S, Svensson M, Inganäs O. Patterning of polymer light-emitting diodes with soft lithography. Advanced Materials, 2000, 12(4): 269–273

    Article  Google Scholar 

  10. Gather M C, Köhnen A, Falcou A, Becker H, Meerholz K. Solution-processed full-color polymer organic light-emitting diode displays fabricated by direct photolithography. Advanced Functional Materials, 2007, 17(2): 191–200

    Article  Google Scholar 

  11. Malinowski P E, Ke T H, Nakamura A, Chang T Y, Gokhale P, Steudel S, Janssen D, Kamochi Y, Koyama I, Iwai Y, Heremans P. 16.3: true-color 640 ppi OLED arrays patterned by CA i-line photolithography. SID Symposium Digest of Technical Papers, 2015, 46(1): 215–218

    Article  Google Scholar 

  12. ** H, Sturm J C. 40.2: super-high resolution transfer printing for full-color OLED display patterning. Sid Symposium Digest of Technical Papers, 2009, 40(1): 597–599

    Article  Google Scholar 

  13. Calvert P. Inkjet printing for materials and devices. Chemistry of Materials, 2001, 13(10): 3299–3305

    Article  Google Scholar 

  14. Tekin E, Smith P J, Schubert U S. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter, 2008, 4(4): 703–713

    Article  Google Scholar 

  15. Singh M, Haverinen H M, Dhagat P, Jabbour G E. Inkjet printingprocess and its applications. Advanced Materials, 2010, 22(6): 673–685

    Article  Google Scholar 

  16. Zhan Z, An J, Wei Y, Tran V T, Du H. Inkjet-printed optoelectronics. Nanoscale, 2017, 9(3): 965–993

    Article  Google Scholar 

  17. Cummins G, Desmulliez M P Y. Inkjet printing of conductive materials: a review. Circuit World, 2012, 38(4): 193–213

    Article  Google Scholar 

  18. Kamyshny A, Magdassi S. Conductive nanomaterials for printed electronics. Small, 2014, 10(17): 3515–3535

    Article  Google Scholar 

  19. Huang F, Cheng Y J, Zhang Y, Liu M S, Jen A K Y. Crosslinkable hole-transporting materials for solution processed polymer lightemitting diodes. Journal of Materials Chemistry, 2008, 18(38): 4495–4509

    Article  Google Scholar 

  20. Huang F, Wu H, Cao Y. Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices. Chemical Society Reviews, 2010, 39(7): 2500–2521

    Article  Google Scholar 

  21. Meyer J, Hamwi S, Kröger M, Kowalsky W, Riedl T, Kahn A. Transition metal oxides for organic electronics: energetics, device physics and applications. Advanced Materials, 2012, 24(40): 5408–5427

    Article  Google Scholar 

  22. Liang X, Bai S,Wang X, Dai X, Gao F, Sun B, Ning Z, Ye Z, ** Y. Colloidal metal oxide nanocrystals as charge transporting layers for solution-processed light-emitting diodes and solar cells. Chemical Society Reviews, 2017, 46(6): 1730–1759

    Article  Google Scholar 

  23. Lee Y Z, Chen X, Chen S A, Wei P K, Fann W S. Soluble electroluminescent poly(phenylene vinylene)s with balanced electron-and hole injections. Journal of the American Chemical Society, 2001, 123(10): 2296–2307

    Article  Google Scholar 

  24. Saikia G, Singh R, Sarmah P J, Akhtar M W, Sinha J, Katiyar M, Iyer P K. Synthesis and characterization of soluble poly (pphenylene) derivatives for PLED applications. Macromolecular Chemistry and Physics, 2009, 210(24): 2153–2159

    Article  Google Scholar 

  25. Ding A L, Pei J, Lai Y H, Huang W. Phenylene-functionalized polythiophene derivatives for light-emitting diodes: their synthesis, characterization and properties. Journal of Materials Chemistry, 2001, 11(12): 3082–3086

    Article  Google Scholar 

  26. Lee J, Cho H J, Cho N S, Hwang D H, Kang J M, Lim E, Lee J I, Shim H K. Enhanced efficiency of polyfluorene derivatives: organic-inorganic hybrid polymer light-emitting diodes. Journal of Polymer Science Part A, Polymer Chemistry, 2006, 44(9): 2943–2954

    Article  Google Scholar 

  27. Wang R, Wang W Z, Yang G Z, Liu T, Yu J, Jiang Y. Synthesis and characterization of highly stable blue-light-emitting hyperbranched conjugated polymers. Journal of Polymer Science Part A, Polymer Chemistry, 2008, 46(3): 790–802

    Article  Google Scholar 

  28. Hou Q, Xu Y, Yang W, Yuan M, Peng J, Cao Y. Novel redemitting fluorene-based copolymers. Journal of Materials Chemistry, 2002, 12(10): 2887–2892

    Article  Google Scholar 

  29. Guan R, Xu Y, Ying L, Yang W, Wu H, Chen Q, Cao Y. Novel green-light-emitting hyperbranched polymers with iridium complex as core and 3, 6-carbazole-co-2, 6-pyridine unit as branch. Journal of Materials Chemistry, 2009, 19(4): 531–537

    Article  Google Scholar 

  30. Liang J, Zhao S, Jiang X F, Guo T, Yip H L, Ying L, Huang F, Yang W, Cao Y. White polymer light-emitting diodes based on exciplex electroluminescence from polymer blends and a single polymer. ACS Applied Materials & Interfaces, 2016, 8(9): 6164–6173

    Article  Google Scholar 

  31. Liang J, Zhong Z, Li S, Jiang X F, Ying L, Yang W, Peng J, Cao Y. Efficient white polymer light-emitting diodes from single polymer exciplex electroluminescence. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5(9): 2397–2403

    Article  Google Scholar 

  32. Liu F, Tang C, Chen Q Q, Li S Z, Wu H B, **e L H, Peng B, Wei W, Cao Y, Huang W. Pyrene functioned diarylfluorenes as efficient solution processable light emitting molecular glass. Organic Electronics, 2009, 10(2): 256–265

    Article  Google Scholar 

  33. Li Y, Li A Y, Li B X, Huang J, Zhao L, Wang B Z, Li J W, Zhu X H, Peng J, Cao Y, Ma D G, Roncali J. Asymmetrically 4,7-disubstituted benzothiadiazoles as efficient non-doped solutionprocessable green fluorescent emitters. Organic Letters, 2009, 11 (22): 5318–5321

    Article  Google Scholar 

  34. Fan Z, Cheng C, Yu S, Ye K, Sheng R, **a D, Ma C, Wang X, Chang Y, Du G. Red and near-infrared electroluminescence from organic light-emitting devices based on a soluble substituted metalfree phthalocyanine. Optical Materials, 2009, 31(6): 889–894

    Article  Google Scholar 

  35. Inaoka S, Roitman D B, Advincula R C. Cross-linked polyfluorene polymer precursors: electrodeposition, PLED device characterization, and two-site co-deposition with poly (vinylcarbazole). Chemistry of Materials, 2005, 17(26): 6781–6789

    Article  Google Scholar 

  36. Gong X, Ostrowski J C, Bazan G C, Moses D, Heeger A J. Red electrophosphorescence from polymer doped with iridium complex. Applied Physics Letters, 2002, 81(20): 3711–3713

    Article  Google Scholar 

  37. Gong X, Ostrowski J C, Moses D, Bazan G C, Heeger A J. Electrophosphorescence from a polymer guest–host system with an iridium complex as guest: Förster energy transfer and charge trap**. Advanced Functional Materials, 2003, 13(6): 439–444

    Article  Google Scholar 

  38. Sirringhaus H, Kawase T, Friend R H, Shimoda T, Inbasekaran M, Wu W, Woo E P. High-resolution inkjet printing of all-polymer transistor circuits. Science, 2000, 290(5499): 2123–2126

    Article  Google Scholar 

  39. Liu J, Zou J, Yang W,Wu H, Li C, Zhang B, Peng J, Cao Y. Highly efficient and spectrally stable blue-light-emitting polyfluorenes containing a dibenzothiophene-S, S-dioxide unit. Chemistry of Materials, 2008, 20(13): 4499–4506

    Article  Google Scholar 

  40. Li Y, Wu H, Zou J, Ying L, Yang W, Cao Y. Enhancement of spectral stability and efficiency on blue light-emitters via introducing dibenzothiophene-S, S-dioxide isomers into polyfluorene backbone. Organic Electronics, 2009, 10(5): 901–909

    Article  Google Scholar 

  41. Liu J, Hu S, Zhao W, Zou Q, Luo W, Yang W, Peng J, Cao Y. Novel spectrally stable saturated blue-light-emitting poly[(fluorene)-co-(dioctyldibenzothiophene-S,S-dioxide)]s. Macromolecular Rapid Communications, 2010, 31(5): 496–501

    Article  Google Scholar 

  42. Zhao L, Zou J, Huang J, Li C, Zhang Y, Sun C, Zhu X, Peng J, Cao Y, Roncali J. Asymmetrically 9, 10-disubstituted anthracenes as soluble and stable blue electroluminescent molecular glasses. Organic Electronics, 2008, 9(5): 649–655

    Article  Google Scholar 

  43. Klimov V I. Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: implications for lasing and solar energy conversion. Journal of Physical Chemistry B, 2006, 110(34): 16827–16845

    Article  Google Scholar 

  44. Bawendi M G, Steigerwald M L, Brus L E. The quantum mechanics of larger semiconductor clusters (“quantum dots”). Annual Review of Physical Chemistry, 1990, 41(1): 477–496

    Article  Google Scholar 

  45. Alivisatos A P, Harris A L, Levinos N J, Steigerwald M L, Brus L E. Electronic states of semiconductor clusters: homogeneous and inhomogeneous broadening of the optical spectrum. Journal of Chemical Physics, 1988, 89(7): 4001–4011

    Article  Google Scholar 

  46. Wang Y, Suna A, McHugh J, Hilinski E F, Lucas P A, Johnson R D. Optical transient bleaching of quantum-confined CdS clusters: the effects of surface-trapped electron-hole pairs. Journal of Chemical Physics, 1990, 92(11): 6927–6939

    Article  Google Scholar 

  47. Chan W C W, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281(5385): 2016–2018

    Article  Google Scholar 

  48. Zhang F, He XW, LiWY, Zhang Y K. One-pot aqueous synthesis of composition-tunable near-infrared emitting Cu-doped CdS quantum dots as fluorescence imaging probes in living cells. Journal of Materials Chemistry, 2012, 22(41): 22250–22257

    Article  Google Scholar 

  49. Jiang C, Liu H, Liu B, Zhong Z, Zou J, Wang J, Wang L, Peng J, Cao Y. Improved performance of inverted quantum dots light emitting devices by introducing double hole transport layers. Organic Electronics, 2016, 31: 82–89

    Article  Google Scholar 

  50. Rogach A L, Gaponik N, Lupton J M, Bertoni C, Gallardo D E, Dunn S, Pira N L, Paderi M, Repetto P, Romanov S G, O’Dwyer C, Torres C M S, Eychmuller A. Light-emitting diodes with semiconductor nanocrystals. Angewandte Chemie International Edition, 2008, 47(35): 6538–6549

    Article  Google Scholar 

  51. Mueller A H, Petruska M A, Achermann M, Werder D J, Akhadov E A, Koleske D D, Hoffbauer M A, Klimov V I. Multicolor lightemitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers. Nano Letters, 2005, 5(6): 1039–1044

    Article  Google Scholar 

  52. Pattantyus-Abraham A G, Kramer I J, Barkhouse A R, Wang X, Konstantatos G, Debnath R, Levina L, Raabe I, Nazeeruddin M K, Grätzel M, Sargent E H. Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano, 2010, 4(6): 3374–3380

    Article  Google Scholar 

  53. Konstantatos G, Howard I, Fischer A, Hoogland S, Clifford J, Klem E, Levina L, Sargent E H. Ultrasensitive solution-cast quantum dot photodetectors. Nature, 2006, 442(7099): 180–183

    Article  Google Scholar 

  54. Koh W K, Saudari S R, Fafarman A T, Kagan C R, Murray C B. Thiocyanate-capped PbS nanocubes: ambipolar transport enables quantum dot based circuits on a flexible substrate. Nano Letters, 2011, 11(11): 4764–4767

    Article  Google Scholar 

  55. Nan W, Niu Y, Qin H, Cui F, Yang Y, Lai R, Lin W, Peng X. Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals: synthesis and structure-dependent optical properties. Journal of the American Chemical Society, 2012, 134(48): 19685–19693

    Article  Google Scholar 

  56. Qin H, Niu Y, Meng R, Lin X, Lai R, Fang W, Peng X. Single-dot spectroscopy of zinc-blende CdSe/CdS core/shell nanocrystals: nonblinking and correlation with ensemble measurements. Journal of the American Chemical Society, 2014, 136(1): 179–187

    Article  Google Scholar 

  57. Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014, 9(9): 687–692

    Article  Google Scholar 

  58. Wang J, Wang N, ** Y, Si J, Tan Z K, Du H, Cheng L, Dai X, Bai S, He H, Ye Z, Lai M L, Friend R H, Huang W. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Advanced Materials, 2015, 27(14): 2311–2316

    Article  Google Scholar 

  59. Li G, Rivarola F W R, Davis N J L K, Bai S, Jellicoe T C, de la Peña F, Hou S, Ducati C, Gao F, Friend R H, Greenham N C, Tan Z K. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Advanced Materials, 2016, 28(18): 3528–3534

    Article  Google Scholar 

  60. Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R,Wei Y, Guo Q, Ke Y, Yu M, ** Y, Liu Y, Ding Q, Di D, Yang L, **ng G, Tian H, ** C, Gao F, Friend R H, Wang J, Huang W. Perovskite light-emitting diodes based on solutionprocessed self-organized multiple quantum wells. Nature Photonics, 2016, 10(11): 699–704

    Article  Google Scholar 

  61. Lim J, Park M, Bae W K, Lee D, Lee S, Lee C, Char K. Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots. ACS Nano, 2013, 7(10): 9019–9026

    Article  Google Scholar 

  62. Tessier M D, Dupont D, De Nolf K D, Roo J D, Hens Z. Economic and size-tunable synthesis of InP/ZnE (E = S, Se) colloidal quantum dots. Chemistry of Materials, 2015, 27(13): 4893–4898

    Article  Google Scholar 

  63. Kim J H, Yang H. High-efficiency Cu–In–S quantum-dot-lightemitting device exceeding 7%. Chemistry of Materials, 2016, 28 (17): 6329–6335

    Article  Google Scholar 

  64. Bai Z, Ji W, Han D, Chen L, Chen B, Shen H, Zou B, Zhong H. Hydroxyl-terminated CuInS3 based quantum dots: toward efficient and bright light emitting diodes. Chemistry of Materials, 2016, 28 (4): 1085–1091

    Article  Google Scholar 

  65. Bol A A, Meijerink A. Luminescence quantum efficiency of nanocrystalline ZnS: Mn2+. 1. Surface passivation and Mn2+ concentration. Journal of Physical Chemistry B, 2001, 105(42): 10197–10202

    Article  Google Scholar 

  66. Shen H, Wang H, Li X, Niu J Z, Wang H, Chen X, Li L S. Phosphine-free synthesis of high quality ZnSe, ZnSe/ZnS, and Cu-, Mn-doped ZnSe nanocrystals. Dalton Transactions (Cambridge, England), 2009, (47): 10534–10540

    Article  Google Scholar 

  67. Jurbergs D, Rogo**a E, Mangolini L, Kortshagen U. Silicon nanocrystals with ensemble quantum yields exceeding 60%. Applied Physics Letters, 2006, 88(23): 233116

    Article  Google Scholar 

  68. Cheng K Y, Anthony R, Kortshagen U R, Holmes R J. Highefficiency silicon nanocrystal light-emitting devices. Nano Letters, 2011, 11(5): 1952–1956

    Article  Google Scholar 

  69. Zhang X, Zhang Y, Wang Y, Kalytchuk S, Kershaw S V, Wang Y, Wang P, Zhang T, Zhao Y, Zhang H, Cui T,Wang Y, Zhao J, YuW W, Rogach A L. Color-switchable electroluminescence of carbon dot light-emitting diodes. ACS Nano, 2013, 7(12): 11234–11241

    Article  Google Scholar 

  70. Yuan F, Wang Z, Li X, Li Y, Tan Z, Fan L, Yang S. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Advanced Materials, 2017, 29 (3): 1604436

    Article  Google Scholar 

  71. Song J, Li J, Li X, Xu L, Dong Y, Zeng H. Quantum dot lightemitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Advanced Materials, 2015, 27(44): 7162–7167

    Article  Google Scholar 

  72. Jellicoe T C, Richter J M, Glass H F J, Tabachnyk M, Brady R, Dutton S E, Rao A, Friend R H, Credgington D, Greenham N C, Böhm ML. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. Journal of the American Chemical Society, 2016, 138(9): 2941–2944

    Article  Google Scholar 

  73. Yang B, Chen J, Hong F, Mao X, Zheng K, Yang S, Li Y, Pullerits T, Deng W, Han K. Lead-free, air-stable all-inorganic cesium bismuth halide perovskite nanocrystals. Angewandte Chemie International Edition, 2017, 56(41): 12471–12475

    Article  Google Scholar 

  74. Chen Q, De Marco N, Yang Y M, Song T B, Chen C C, Zhao H, Hong Z, Zhou H, Yang Y. Under the spotlight: the organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 2015, 10(3): 355–396

    Article  Google Scholar 

  75. Cortecchia D, Dewi H A, Yin J, Bruno A, Chen S, Baikie T, Boix P P, Grätzel M, Mhaisalkar S, Soci C, Mathews N. Lead-free MA2CuClxBr4–x hybrid perovskites. Inorganic Chemistry, 2016, 55(3): 1044–1052

    Article  Google Scholar 

  76. Lee K H, Lee J H, Kang H D, Park B, Kwon Y, Ko H, Lee C, Lee J, Yang H. Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots. ACS Nano, 2014, 8(5): 4893–4901

    Article  Google Scholar 

  77. Anikeeva P O, Halpert J E, Bawendi M G, Bulovic V. Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer. Nano Letters, 2007, 7(8): 2196–2200

    Article  Google Scholar 

  78. Bae W K, Lim J, Lee D, Park M, Lee H, Kwak J, Char K, Lee C, Lee S. R/G/B/natural white light thin colloidal quantum dot-based light-emitting devices. Advanced Materials, 2014, 26(37): 6387–6393

    Article  Google Scholar 

  79. Dai X, Deng Y, Peng X, ** Y. Quantum-dot light-emitting diodes for large-area displays: towards the dawn of commercialization. Advanced Materials, 2017, 29(14): 1607022

    Article  Google Scholar 

  80. Li J, Xu L,Wang T, Song J, Chen J, Xue J, Dong Y, Cai B, Shan Q, Han B, Zeng H. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Advanced Materials, 2017, 29(5): 1603885

    Article  Google Scholar 

  81. Dai X, Zhang Z, ** Y, Niu Y, Cao H, Liang X, Chen L, Wang J, Peng X. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature, 2014, 515(7525): 96–99

    Article  Google Scholar 

  82. Manders J R, Qian L, Titov A, Hyvonen J, Tokarz-Scott J, Acharya K P, Yang Y, Cao W, Zheng Y, Xue J, Holloway P H. High efficiency and ultra-wide color gamut quantum dot LEDs for next generation displays. Journal of the Society for Information Display, 2015, 23(11): 523–528

    Article  Google Scholar 

  83. Shen H, Cao W, Shewmon N T, Yang C, Li L S, Xue J. Highefficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes. Nano Letters, 2015, 15(2): 1211–1216

    Article  Google Scholar 

  84. Yang Y, Zheng Y, Cao W, Titov A, Hyvonen J, Manders J R, Xue J, Holloway P H, Qian L. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nature Photonics, 2015, 9(4): 259–266

    Article  Google Scholar 

  85. Gao M, Li L, Song Y. Inkjet printing wearable electronic devices. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5(12): 2971–2993

    Article  Google Scholar 

  86. Liu X, Tarn T J, Huang F, Fan J. Recent advances in inkjet printing synthesis of functional metal oxides. Particuology, 2015, 19: 1–13

    Article  Google Scholar 

  87. Jang D, Kim D, Moon J. Influence of fluid physical properties on ink-jet printability. Langmuir, 2009, 25(5): 2629–2635

    Article  Google Scholar 

  88. Liu H M, Zheng H, Xu W, Peng J B. Technology and development of ink-jet printing electroluminescence displays. Materials China, 2014, 33(3): 163–171

    Google Scholar 

  89. Deegan R D, Baka** O, Dupont T F, Huber G, Nagel S R, Witten T A. Capillary flow as the cause of ring stains from dried liquid drops. Nature, 1997, 389(6653): 827–829

    Article  Google Scholar 

  90. Yunker P J, Still T, Lohr M A, Yodh A G. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature, 2011, 476(7360): 308–311

    Article  Google Scholar 

  91. Soltman D, Subramanian V. Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir, 2008, 24 (5): 2224–2231

    Article  Google Scholar 

  92. Hu H, Larson R G. Marangoni effect reverses coffee-ring depositions. Journal of Physical Chemistry B, 2006, 110(14): 7090–7094

    Article  Google Scholar 

  93. Kim D, Jeong S, Park B K, Moon J. Direct writing of silver conductive patterns: improvement of film morphology and conductance by controlling solvent compositions. Applied Physics Letters, 2006, 89(26): 264101

    Article  Google Scholar 

  94. Still T, Yunker P J, Yodh A G. Surfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops. Langmuir, 2012, 28(11): 4984–4988

    Article  Google Scholar 

  95. Jiang C, Zhong Z, Liu B, He Z, Zou J, Wang L, Wang J, Peng J, Cao Y. Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices. ACS Applied Materials & Interfaces, 2016, 8(39): 26162–26168

    Article  Google Scholar 

  96. Cui Z. Printed Electronics: Materials, Technologies and Applications. Bei**g: Higher Education Press, 2012 (in Chinese)

    Google Scholar 

  97. Shin P, Sung J. The effect of driving waveforms on droplet formation in a piezoelectric inkjet nozzle. In: Proceedings of Electronics Packaging Technology Conference, Singapore. IEEE, 2009, 158–162

    Google Scholar 

  98. Kwon K S, Kim W. A waveform design method for high-speed inkjet printing based on self-sensing measurement. Sensors and Actuators. A, Physical, 2007, 140(1): 75–83

    Article  MathSciNet  Google Scholar 

  99. Shin P, Sung J, Lee M H. Control of droplet formation for low viscosity fluid by double waveforms applied to a piezoelectric inkjet nozzle. Microelectronics and Reliability, 2011, 51(4): 797–804

    Article  Google Scholar 

  100. Kwon K S. Experimental analysis of waveform effects on satellite and ligament behavior via in situ measurement of the drop-ondemand drop formation curve and the instantaneous jetting speed curve. Journal of Micromechanics and Microengineering, 2010, 20 (11): 115005

    Article  MathSciNet  Google Scholar 

  101. Kim C, Nogi M, Suganuma K, Yamato Y. Inkjet-printed lines with well-defined morphologies and low electrical resistance on repellent pore-structured polyimide films. ACS Applied Materials & Interfaces, 2012, 4(4): 2168–2173

    Article  Google Scholar 

  102. Nguyen P Q M, Yeo L P, Lok B K, Lam Y C. Patterned surface with controllable wettability for inkjet printing of flexible printed electronics. ACS Applied Materials & Interfaces, 2014, 6(6): 4011–4016

    Article  Google Scholar 

  103. Mahajan A, Hyun W J, Walker S B, Rojas G A, Choi J H, Lewis J A, Francis L F, Frisbie C D. A self-aligned strategy for printed electronics: exploiting capillary flow on microstructured plastic surfaces. Advanced Electronic Materials, 2015, 1(9): 1500137

    Article  Google Scholar 

  104. Park K S, Baek J, Park Y, Lee L, Lee Y E, Kang Y, Sung M M. Inkjet-assisted nanotransfer printing for large-scale integrated nanopatterns of various single-crystal organic materials. Advanced Materials, 2016, 28(15): 2874–2880

    Article  Google Scholar 

  105. Wu S F, Li S H,Wang Y K, Huang C C, Sun Q, Liang J J, Liao L S, FungMK. White organic LED with a luminous efficacy exceeding 100 lm·W–1 without light out-coupling enhancement techniques. Advanced Functional Materials, 2017, 27(31): 1701314

    Article  Google Scholar 

  106. Chiba T, Pu Y J, Kido J. Solution-processed white phosphorescent tandem organic light-emitting devices. Advanced Materials, 2015, 27(32): 4681–4687

    Article  Google Scholar 

  107. Vaart N C V D, Lifka H, Budzelaar F P M, Rubingh J E J M, Hoppenbrouwers J J L, Dijksman J F, Verbeek R G F A, Woudenberg R, Vossen F J, Hiddink M G H, Rosink J J W M, Bernards T N M, Giraldo A. 44.4: distinguished paper: towards large-area full-color active-matrix printed polymer OLED television. Sid Symposium Digest of Technical Papers, 2004, 35(1): 1284–1287

    Article  Google Scholar 

  108. Hebner T R, Wu C C, Marcy D, Lu M H, Sturm J C. Ink-jet printing of doped polymers for organic light emitting devices. Applied Physics Letters, 1998, 72(5): 519–521

    Article  Google Scholar 

  109. Kobayashi H, Kanbe S, Seki S, Kigchi H, Kimura M, Yudasaka I, Miyashita S, Shimoda T, Towns C R, Burroughes J H, Friend R H. A novel RGB multicolor light-emitting polymer display. Synthetic Metals, 2000, 111–112: 125–128

    Article  Google Scholar 

  110. Duineveld P C, de Kok M M, Buechel M, Sempel A, Mutsaers K A H, van de Weijer P, Camps I G J, van de Biggelaar T, Rubingh J E J M, Haskal E I. Ink-jet printing of polymer light-emitting devices. Proceedings of the Society for Photo-Instrumentation Engineers, 2002, 4464: 59–67

    Google Scholar 

  111. Fleuster M, Klein M, Roosmalen P, Wit A, Schwab H. 44.2: Mass manufacturing of full color passive-matrix and active-matrix PLED displays. SID Symposium Digest of Technical Papers, 2004, 35(1): 1276–1279

    Article  Google Scholar 

  112. Gupta R, Ingle A, Natarajan S, So F. 44.3: Ink jet printed organic displays. SID Symposium Digest of Technical Papers, 2004, 35(1): 1281–1283

    Article  Google Scholar 

  113. Rhee J, Wang J, Cha S, Chung J, Lee D, Hong S, Choi B, Goh J, Jung K, Kim S, Ko C, Koh B, Sung S, Park K, Kim N, Chung K, Gregory H, Bale M, Creighton C, Wild B, Shawcross A, Webb L, Hatcher M, Lees R, Richardson M, Bassett O, Coats S, Jongman J, Goddard S, Lyon P, Murphy C, Wallace P, Carte J, Athanassopoulou N. P-177: a 14.1-in. full-color polymer-LED display with a-Si TFT backplane by ink-jet printing. SID Symposium Digest of Technical Papers, 2006, 37(1): 895–897

    Google Scholar 

  114. Gohda T, Kobayashi Y, Okano K, Inoue S, Okamoto K, Hashimoto S, Yamamoto E, Morita H, Mitsui S, Koden M. 58.3: a 3.6-in. 202-ppi full-color AMPLED display fabricated by ink-jet method. SID Symposium Digest of Technical Papers, 2006, 37(1): 1767–1770

    Article  Google Scholar 

  115. Takei S, Kitabayashi A, Hanaoka H, Shinohara K, Goto M, Nozawa T, Kubota T, Kasai T, Sakai S, Miyashita S. P-186L: latenews poster: fabrication of completely uniform OLED display using an improved inkjet method. SID Symposium Digest of Technical Papers, 2009, 40(1): 1351–1354

    Article  Google Scholar 

  116. Zheng H, Zheng Y, Liu N, Ai N,Wang Q,Wu S, Zhou J, Hu D, Yu S, Han S, Xu W, Luo C, Meng Y, Jiang Z, Chen Y, Li D, Huang F, Wang J, Peng J, Cao Y. All-solution processed polymer lightemitting diode displays. Nature Communications, 2013, 4(3): 1971

    Article  Google Scholar 

  117. Chen C, Chung Y, Chen C, Chen P Y, Lee C H, Cheng L I, Tsai L, Ting H C, Lin L F, Chen C C, Shih T H, Chen C Y, Chang L H, Lin Y. 55.2: ink-jet printed AMOLED displays based on high mobility IGZO TFTs: cost does matter! Sid Symposium Digest of Technical Papers, 2014, 44(1):760–762

    Article  Google Scholar 

  118. Chen P Y, Chen C L, Chen C C, Tsai L, Ting H C, Lin L F, Chen C C, Chen C Y, Chang L H, Shih T H, Chen Y H, Huang J C, Lai M Y, Hsu C M, Lin Y. 30.1: invited paper: 65-inch inkjet printed organic light-emitting display panel with high degree of pixel uniformity. SID Symposium Digest of Technical Papers, 2014, 45 (1): 396–398

    Article  Google Scholar 

  119. JOLED Inc. 世界初の印刷方式4K有 ELパネル、サンプル出荷を 始!http://www.j-oled.com/news/press/finetec2017/ (2017/5/17)

  120. Olivier S, Derue L, Geffroy B, Ishow E, Maindron T. Inkjet printing of photopolymerizable small molecules for OLED applications. In: Proceedings of Organic Light Emitting Materials and Devices XIX. International Society for Optics and Photonics, 2015, 9566: 95661N

    Article  Google Scholar 

  121. Haverinen H M, Myllylä R A, Jabbour G E. Inkjet printed RGB quantum dot-hybrid LED. Journal of Display Technology, 2010, 6 (3): 87–89

    Article  Google Scholar 

  122. Kim T H, Cho K S, Lee E K, Lee S J, Chae J, Kim J W, Kim D H, Kwon J Y, Amaratunga G, Lee S Y, Choi B L, Kuk Y, Kim J M, Kim K. Full-colour quantum dot displays fabricated by transfer printing. Nature Photonics, 2011, 5(3): 176–182

    Article  Google Scholar 

  123. Kim B H, OnsesMS, Lim J B, Nam S, Oh N, Kim H, Yu K J, Lee J W, Kim J H, Kang S K, Lee C H, Lee J, Shin J H, Kim N H, Leal C, Shim M, Rogers J A. High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. Nano Letters, 2015, 15(2): 969–973

    Article  Google Scholar 

  124. Han J, Ko D, Park M, Roh J, Jung H, Lee Y, Kwon Y, Sohn J, Bae W K, Chin B D, Lee C. Toward high-resolution, inkjet-printed, quantum dot light-emitting diodes for next-generation displays. Journal of the Society for Information Display, 2016, 24(9): 545–551

    Article  Google Scholar 

  125. Liu Y, Li F, **e X, Chen W, Xu Z, Zheng C, Hu H, Guo T. P-122: red and green quantum dots light-emitting diodes fabricated by inkjet printing. Sid Symposium Digest of Technical Papers, 2017, 48(1): 1715–1718

    Article  Google Scholar 

  126. Jiang C, Mu L, Zou J, He Z, Zhong Z, Wang LMiao, Xu, Wang J, Peng J, Cao Y. Full-color quantum dots active matrix display fabricated by ink-jet printing. Science China Chemistry, 2017, https://doi.org/10.1007/s11426-017-9087-y

    Google Scholar 

  127. **a S, Cheon K O, Brooks J J, Rothman M, Ngo T, Hett P, Kwong R C, Inbasekaran M, Brown J J, Sonoyama T, Ito M, Seki S, Miyashita S. Printable phosphorescent organic light-emitting devices. Journal of the Society for Information Display, 2009, 17 (2): 167–172

    Article  Google Scholar 

  128. Chen P, Chen C, Hsieh C, Lin J M, Lin Y S, Lin Y. P-56: High resolution organic light-emitting diode panel fabricated by ink jet printing process. Sid Symposium Digest of Technical Papers, 2015, 46(1):1352–1354

    Article  Google Scholar 

  129. Sax S, Rugen-Penkalla N, Neuhold A, Schuh S, Zojer E, List E J W, Müllen K. Efficient blue-light-emitting polymer heterostructure devices: the fabrication of multilayer structures from orthogonal solvents. Advanced Materials, 2010, 22(18): 2087–2091

    Article  Google Scholar 

  130. Patel D G D, Graham K R, Reynolds J R. A Diels–Alder crosslinkable host polymer for improved PLED performance: the impact on solution processed doped device and multilayer device performance. Journal of Materials Chemistry, 2012, 22(7): 3004–3014

    Article  Google Scholar 

  131. Kim J S, Ho P K H, Murphy C E, Friend R H. Phase separation in polyfluorene-based conjugated polymer blends: lateral and vertical analysis of blend spin-cast thin films. Macromolecules, 2004, 37 (8): 2861–2871

    Article  Google Scholar 

  132. **a Y, Friend R H. Controlled phase separation of polyfluorene blends via inkjet printing. Macromolecules, 2005, 38(15): 6466–6471

    Article  Google Scholar 

  133. Chang S C, Liu J, Bharathan J, Yang Y, Onohara H, Kido J. Multicolor organic light-emitting diodes processed by hybrid inkjet printing. Advanced Materials, 1999, 11(9): 734–737

    Article  Google Scholar 

  134. Gorter H, Coenen M J J, Slaats M W L, Ren M, Lu W, Kuijpers C J, Groen W A. Toward inkjet printing of small molecule organic light emitting diodes. Thin Solid Films, 2013, 532: 11–15

    Article  Google Scholar 

  135. Ding Z, **ng R, Fu Q, Ma D, Han Y. Patterning of pinhole free small molecular organic light-emitting films by ink-jet printing. Organic Electronics, 2011, 12(4): 703–709

    Article  Google Scholar 

  136. Coe S, Woo W K, Bawendi M, Bulovic V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature, 2002, 420(6917): 800–803

    Article  Google Scholar 

  137. Kim H H, Park S, Yi Y, Son D I, Park C, Hwang D K, Choi W K. Inverted quantum dot light emitting diodes using polyethylenimine ethoxylated modified ZnO. Scientific Reports, 2015, 5: 8968

    Article  Google Scholar 

  138. Kim O S, Kang B H, Lee J S, Lee S W, Cha S H, Lee J W, Kim S W, Kim S H, Kang S W. Efficient quantum dots light-emitting devices using polyvinyl pyrrolidone-capped ZnO nanoparticles with enhanced charge transport. IEEE Electron Device Letters, 2016, 37(8): 1022–1024

    Article  Google Scholar 

  139. Liang F, Liu Y, Hu Y, Shi Y L, Liu Y Q, Wang Z K, Wang X D, Sun B Q, Liao L S. Polymer as an additive in the emitting layer for high-performance quantum dot light-emitting diodes. ACS Applied Materials & Interfaces, 2017, 9(23): 20239–20246

    Article  Google Scholar 

  140. Kim L, Anikeeva P O, Coe-Sullivan S A, Steckel J S, Bawendi M G, Bulovic V. Contact printing of quantum dot light-emitting devices. Nano Letters, 2008, 8(12): 4513–4517

    Article  Google Scholar 

  141. Kim B H, Nam S, Oh N, Cho S Y, Yu K J, Lee C H, Zhang J, Deshpande K, Trefonas P, Kim J H, Lee J, Shin J H, Yu Y, Lim J B, Won S M, Cho Y K, Kim N H, Seo K J, Lee H, Kim T I, Shim M, Rogers J A. Multilayer transfer printing for pixelated, multicolor quantum dot light-emitting diodes. ACS Nano, 2016, 10(5): 4920–4925

    Article  Google Scholar 

  142. Choi M K, Yang J, Kang K, Kim D C, Choi C, Park C, Kim S J, Chae S I, Kim T H, Kim J H, Hyeon T, Kim D H. Wearable redgreen-blue quantum dot light-emitting diode array using highresolution intaglio transfer printing. Nature Communications, 2015, 6: 7149

    Article  Google Scholar 

  143. Roy D, Munz M, Colombi P, Bhattacharyya S, Salvetat J P, Cumpson P J, SaboungiML. Directly writing with nanoparticles at the nanoscale using dip-pen nanolithography. Applied Surface Science, 2007, 254(5): 1394–1398

    Article  Google Scholar 

  144. Gokarna A, Lee S K, Hwang J S, Cho Y H, Lim Y T, Chung B H, Lee M. Fabrication of CdSe/ZnS quantum-dot-conjugated protein microarrays and nanoarrays. Journal of the Korean Physical Society, 2008, 53(925): 3047–3050

    Article  Google Scholar 

  145. Park J S, Kyhm J, Kim H H, Jeong S, Kang J, Lee S E, Lee K T, Park K, Barange N, Han J, Song J D, Choi W K, Han I K. Alternative patterning process for realization of large-area, fullcolor, active quantum dot display. Nano Letters, 2016, 16(11): 6946–6953

    Article  Google Scholar 

  146. Haverinen H M, Myllylä R A, Jabbour G E. Inkjet printing of light emitting quantum dots. Applied Physics Letters, 2009, 94(7): 073108

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Basic Research and Development Program of China (Nos. 2015CB655004, 2016YFB0401005, and 2016YFF0203603), the National Natural Science Foundation of China (Grant Nos. 21673082, U1601651, and U1301243), Guangdong Science and Technology Plan (No. 2017B090901055), the Pearl River S&T Nova Program of Guangzhou (Nos. 201710010066, and 201610010052), the Fundamental Research Funds for the Central Universities (Nos. 2017MS008 and 2017ZD001), China Postdoctoral Science Foundation (No. 2017T100627) and the Tiptop Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program (Nos. 2015TQ01C777, and 2016TQ03C331).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Wang or Junbiao Peng.

Additional information

Luhua Lan received his B.S. degree in Information Display and Opto-Electronic technology from South China University of Technology, Guangzhou, China, in 2016. He is currently working toward his M.S. degree in Materials Physics and Chemistry in South China University of Technology, Guangzhou, China. His current research interests include interface optimization of OLEDs and QLEDs fabricated by solotion processing.

Jianhua Zou is currently an Associate Research Fellow (2013) in the School of Material Science and Engineering at South China University of Technology (SCUT). He received his Bachelors degree in Materials Physics from North East University (China) in 2005, and his Ph.D. degree from the Physics Department at SCUT in 2010. His current research interests is device physics in organic electronics, including OLEDs and QLED. He has also published more than 50 papers on highimpact journals in these topics.

Congbiao Jiang received his B.S. degree in Material Physics fromWuhan University of Science and Technology, Wuhan, China, in 2014. He is currently working toward his Ph.D. degree in Materials Physics and Chemistry in South China University of Technology, Guangzhou, China. His current research interests include photoelectric materials, technique optimization on inkjet printed electroluminescent decives and physics of device.

Lei Wang received his B.S. degree in the department of Polymer Materials Science and Engineering from Hebei University of Technology in 2004, and his Ph.D. degree in Materials Physics from South China University of Technology (SCUT) in 2009. He is currently an Associate Research Fellow (2011) in the SCUT. His research interests include organic and inorganic semiconductor materials, devices and their process development, and he has done a large number of scientific research work in the field of OLED and metal oxide TFT.

Junbiao Peng received his B.S. degree in Physics at Jilin University in 1984 and M.S. and Ph.D. degrees respectively in 1987 and 1993 in Changchun Institute of Physics (CIP), Chinese Academy of Sciences. In the subsequent years, he did his postdoc work in the Korea Institute of Science and Technology and the National Institute of Materials and Chemical Research (NIMC), Japan. In 2001, he joined the Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, as a full professor. His current research interests include design, characterization, and application of organic optoelectronic devices such as OLEDs, OPVs and TFTs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, L., Zou, J., Jiang, C. et al. Inkjet printing for electroluminescent devices: emissive materials, film formation, and display prototypes. Front. Optoelectron. 10, 329–352 (2017). https://doi.org/10.1007/s12200-017-0765-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-017-0765-x

Keywords

Navigation