Log in

Eukaryotic elongation factor 2 kinase confers tolerance to stress conditions in cancer cells

  • Mini Review
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

Eukaryotic elongation factor 2 (eEF2) is a member of the GTP-binding translation elongation factor family that is essential for protein synthesis. eEF2 kinase (eEF2K) is a structurally and functionally unique protein kinase in the calmodulin-mediated signaling pathway. eEF2K phosphorylates eEF2, thereby inhibiting eEF2 function under stressful conditions. eEF2K regulates numerous processes, such as protein synthesis, cell cycle progression, and induction of autophagy and apoptosis in cancer cells. This review will demonstrate the mechanisms underlying eEF2K activity in cancer cells under different stresses, such as nutrient deprivation, hypoxia, and DNA damage via eEF2 regulation. In vivo, in vitro, and clinical studies indicated that eEF2K may be a novel biomarker and therapeutic target for cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashour AA, Abdel-Aziz AA, Mansour AM et al (2014) Targeting elongation factor-2 kinase (eEF-2K) induces apoptosis in human pancreatic cancer cells. Apoptosis 19:241–258

    Article  CAS  PubMed  Google Scholar 

  • Casado E, Garcia VM, Sánchez JJ et al (2012) Upregulation of trefoil factor 3 (TFF3) after rectal cancer chemoradiotherapy is an adverse prognostic factor and a potential therapeutic target. Int J Radiat Oncol Biol Phys 84:1151–1158

    Article  CAS  PubMed  Google Scholar 

  • Chen TJ, Cheng HM, Wang DC et al (2011a) Nonlethal aluminum maltolate can reduce brain-derived neurotrophic factor-induced Arc expression through interrupting the ERK signaling in SH-SY5Y neuroblastoma cells. Toxicol Lett 200:67–76

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Gopalakrishnan SM, Bui MH et al (2011b) 1-Benzyl-3-cetyl-2-methylimidazolium iodide (NH125) induces phosphorylation of eukaryotic elongation factor-2 (eEF2): a cautionary note on the anticancer mechanism of an eEF2 kinase inhibitor. J Biol Chem 286:43951–43958

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng Y, Ren X, Zhang Y et al (2011) eEF-2 kinase dictates cross-talk between autophagy and apoptosis induced by Akt inhibition, thereby modulating cytotoxicity of novel Akt inhibitor MK-2206. Cancer Res 71:2654–2663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Devkota AK, Tavares CD, Warthaka M et al (2012) Investigating the kinetic mechanism of inhibition of elongation factor 2 kinase by NH125: evidence of a common in vitro artifact. Biochemistry 51:2100–2112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferdek PE, Gerasimenko JV, Peng S et al (2012) A novel role for Bcl-2 in regulation of cellular calcium extrusion. Curr Biol 22:1241–1246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gills JJ, Lopiccolo J, Dennis PA (2008) Nelfinavir, a new anti-cancer drug with pleiotropic effects and many paths to autophagy. Autophagy 4:107–109

    Article  CAS  PubMed  Google Scholar 

  • Grandjean M, Sermeus A, Branders S et al (2013) Hypoxia integration in the serological proteome analysis unmasks tumor antigens and fosters the identification of anti-phospho-eEF2 antibodies as potential cancer biomarkers. PLoS One 8:e76508

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hizli AA, Chi Y, Swanger J et al (2013) Phosphorylation of eukaryotic elongation factor 2 (eEF2) by cyclin A-cyclin-dependent kinase 2 regulates its inhibition by eEF2 kinase. Mol Cell Biol 33:596–604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kenney JW, Moore CE, Wang X et al (2014) Eukaryotic elongation factor 2 kinase, an unusual enzyme with multiple roles. Adv Biol Regul 55:15–27

    Article  CAS  PubMed  Google Scholar 

  • Kurata S, Shen B, Liu JO et al (2013) Possible steps of complete disassembly of post-termination complex by yeast eEF3 deduced from inhibition by translocation inhibitors. Nucleic Acids Res 41:264–276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leprivier G, Remke M, Rotblat B et al (2013) The eEF2 kinase confers resistance to nutrient deprivation by blocking translation elongation. Cell 153:1064–1079

    Article  CAS  PubMed  Google Scholar 

  • Mencalha AL, Corrêa S, Abdelhay E (2014) Role of calcium-dependent protein kinases in chronic myeloid leukemia: combined effects of PKC and BCR-ABL signaling on cellular alterations during leukemia development. Onco Targets Ther 7:1247–1254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meric-Bernstam F, Chen H, Akcakanat A et al (2012) Aberrations in translational regulation are associated with poor prognosis in hormone receptor-positive breast cancer. Breast Cancer Res 14:R138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Monteggia LM, Gideons E, Kavalali ET et al (2013) The role of eukaryotic elongation factor 2 kinase in rapid antidepressant action of ketamine. Biol Psychiatry 73:1199–1203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Niu M, Klingler-Hoffmann M, Brazzatti JA et al (2013) Comparative proteomic analysis implicates eEF2 as a novel target of PI3Kgamma in the MDA-MB-231 metastatic breast cancer cell line. Proteome Sci 11:4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pyr Dit Ruys S, Wang X, Smith EM et al (2012) Identification of autophosphorylation sites in eukaryotic elongation factor-2 kinase. Biochem J 442:681–692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith EM, Proud CG (2008) cdc2-cyclin B regulates eEF2 kinase activity in a cell cycle- and amino acid-dependent manner. EMBO J 27:1005–1016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun HG, Dong XJ, Lu T et al (2013) Clinical value of eukaryotic elongation factor 2 (eEF2) in non-small cell lung cancer patients. Asian Pac J Cancer Prev 14:6533–6535

    Article  Google Scholar 

  • Tekedereli I, Alpay SN, Tavares CD et al (2012) Targeted silencing of elongation factor 2 kinase suppresses growth and sensitizes tumors to doxorubicin in an orthotopic model of breast cancer. PLoS One 7:e41171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • White-Gilbertson S, Kurtz DT, Voelkel-Johnson C (2009) The role of protein synthesis in cell cycling and cancer. Mol Oncol 3:402–408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu H, Yang JM, ** S et al (2006) Elongation factor-2 kinase regulates autophagy in human glioblastoma cells. Cancer Res 66:3015–3023

    Article  CAS  PubMed  Google Scholar 

  • Wullner U, Neef I, Eller A et al (2008) Cell-specific induction of apoptosis by rationally designed bivalent aptamer-siRNA transcripts silencing eukaryotic elongation factor 2. Curr Cancer Drug Targets 8:554–565

    Article  CAS  PubMed  Google Scholar 

  • Yang CW, Lee YZ, Hsu HY et al (2013) c-Jun-mediated anticancer mechanisms of tylophorine. Carcinogenesis 34:1304–1314

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Bialkowska A, Rusovici R et al (2007) Lysophosphatidic acid facilitates proliferation of colon cancer cells via induction of Kruppel-like factor 5. J Biol Chem 282:15541–15549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Cheng Y, Zhang L et al (2011) Inhibition of eEF-2 kinase sensitizes human glioma cells to TRAIL and down-regulates Bcl-xL expression. Biochem Biophys Res Commun 414:129–134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng Q, Ye J, Cao J (2014) Translational regulator eIF2α in tumor. Tumour Biol 35:6255–6264

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (No. 81272504), Research and Innovation Project for College Graduates of Jiangsu Province (No.CXZZ12_0588), Innovation Team (No. LJ201123 (EH11)), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) (JX10231801), grants from Key Academic Discipline of Jiangsu Province “Medical Aspects of Specific Environments,” and Six Major Talent Peak Project of Jiangsu Province (2013-WSN-040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **nchen Sun.

Additional information

Hongcheng Zhu, ** Yang, and Jia Liu equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Yang, X., Liu, J. et al. Eukaryotic elongation factor 2 kinase confers tolerance to stress conditions in cancer cells. Cell Stress and Chaperones 20, 217–220 (2015). https://doi.org/10.1007/s12192-014-0545-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-014-0545-0

Keywords

Navigation