Log in

The mutual crosstalk between iron and erythropoiesis

  • Progress in Hematology
  • The path from stem cells to red blood cells
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Iron homeostasis and erythropoiesis are strongly interconnected. On one side iron is essential to terminal erythropoiesis for hemoglobin production, on the other erythropoiesis may increase iron absorption through the production of erythroferrone, the erythroid hormone that suppresses hepcidin expression Also erythropoietin production is modulated by iron through the iron regulatory proteins-iron responsive elements that control the hypoxia inducible factor 2-α. The second transferrin receptor, an iron sensor both in the liver and in erythroid cells modulates erythropoietin sensitivity and is a further link between hepcidin and erythropoiesis. When erythropoietin is decreased in iron deficiency the erythropoietin sensitivity is increased because the second transferrin receptor is removed from cell surface. A deranged balance between erythropoiesis and iron/hepcidin may lead to anemia, as in the case of iron deficiency, defective iron uptake and erythroid utilization or subnormal recycling. Defective control of hepcidin production may cause iron deficiency, as in the recessive disorder iron refractory iron deficiency anemia or in anemia of inflammation, or in iron loading anemias, which are characterized by excessive but ineffective erythropoiesis. The elucidation of the mechanisms that regulates iron homeostasis and erythropoiesis is leading to the development of drugs for the benefit of both iron and erythropoiesis disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Parrow NL, Li Y, Feola M, Guerra A, Casu C, Prasad P, et al. Lobe specificity of iron binding to transferrin modulates murine erythropoiesis and iron homeostasis. Blood. 2019;134(17):1373–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Muckenthaler MU, Rivella S, Hentze MW, Galy B. A red carpet for iron metabolism. Cell. 2017;168(3):344–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306(5704):2090–3.

    Article  CAS  PubMed  Google Scholar 

  4. Aschemeyer S, Qiao B, Stefanova D, Valore EV, Sek AC, Ruwe TA, et al. Structure-function analysis of ferroportin defines the binding site and an alternative mechanism of action of hepcidin. Blood. 2018;131(8):899–910.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Billesbølle CB, Azumaya CM, Kretsch RC, Powers AS, Gonen S, Schneider S, et al. Structure of hepcidin-bound ferroportin reveals iron homeostatic mechanisms. Nature. 2020;586(7831):807–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Mastrogiannaki M, Matak P, Keith B, Simon MC, Vaulont S, Peyssonnaux C. HIF-2alpha, but not HIF-1alpha, promotes iron absorption in mice. J Clin Invest. 2009;119(5):1159–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schwartz AJ, Das NK, Ramakrishnan SK, Jain C, Jurkovic MT, Wu J, et al. Hepatic hepcidin/intestinal HIF-2α axis maintains iron absorption during iron deficiency and overload. J Clin Invest. 2019;129(1):336–48.

    Article  PubMed  Google Scholar 

  8. Camaschella C. Iron-deficiency anemia. N Engl J Med. 2015;372(19):1832–43.

    Article  PubMed  Google Scholar 

  9. Ganz T. Anemia of inflammation. N Engl J Med. 2019;381(12):1148–57.

    Article  CAS  PubMed  Google Scholar 

  10. Maio N, Rouault TA. Outlining the complex pathway of mammalian Fe-S cluster biogenesis. Trends Biochem Sci. 2020;45(5):411–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Camaschella C, Campanella A, De Falco L, Boschetto L, Merlini R, Silvestri L, et al. The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload. Blood. 2007;110(4):1353–8.

    Article  CAS  PubMed  Google Scholar 

  12. Ducamp S, Fleming MD. The molecular genetics of sideroblastic anemia. Blood. 2019;133(1):59–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Miyajima H, Hosoi Y. Aceruloplasminemia. GeneReviews 2003. London: Intech; 2018.

    Google Scholar 

  14. Wang C-Y, Babitt JL. Liver iron sensing and body iron homeostasis. Blood. 2019;133(1):18–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Enns CA, Jue S, Zhang A-S. The ectodomain of matriptase-2 plays an important nonproteolytic role in suppressing hepcidin expression in mice. Blood. 2020;136(8):989–1001.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Silvestri L, Pagani A, Nai A, De Domenico I, Kaplan J, Camaschella C. The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell Metab. 2008;8(6):502–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Colucci S, Pagani A, Pettinato M, Artuso I, Nai A, Camaschella C, et al. The immunophilin FKBP12 inhibits hepcidin expression by binding the BMP type I receptor ALK2 in hepatocytes. Blood. 2017;130(19):2111–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Du X, She E, Gelbart T, Truksa J, Lee P, **a Y, et al. The serine protease TMPRSS6 is required to sense iron deficiency. Science. 2008;320(5879):1088–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Finberg KE, Heeney MM, Campagna DR, Aydinok Y, Pearson HA, Hartman KR, et al. Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA). Nat Genet. 2008;40(5):569–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Camaschella C, Pagani A. Mendelian inheritance of anemia due to disturbed iron homeostasis. Semin Hematol. 2021;58(3):175–81.

    Article  PubMed  Google Scholar 

  21. De Falco L, Sanchez M, Silvestri L, Kannengiesser C, Muckenthaler MU, Iolascon A, et al. Iron refractory iron deficiency anemia. Haematologica. 2013;98(6):845–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Heeney MM, Finberg KE. Iron-refractory iron deficiency anemia (IRIDA). Hematol Oncol Clin N Am. 2014;28(4):637–52.

    Article  Google Scholar 

  23. Bell S, Rigas AS, Magnusson MK, Ferkingstad E, Allara E, Bjornsdottir G, et al. A genome-wide meta-analysis yields 46 new loci associating with biomarkers of iron homeostasis. Commun Biol. 2021;4(1):156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Weiss G, Ganz T, Goodnough LT. Anemia of inflammation. Blood. 2019;133(1):40–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Camaschella C, Girelli D. The changing landscape of iron deficiency. Mol Aspects Med. 2020;75: 100861.

    Article  CAS  PubMed  Google Scholar 

  26. Kautz L, Jung G, Valore EV, Rivella S, Nemeth E, Ganz T. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet. 2014;46(7):678–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arezes J, Foy N, McHugh K, Sawant A, Quinkert D, Terraube V, et al. Erythroferrone inhibits the induction of hepcidin by BMP6. Blood. 2018;132(14):1473–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ganz T, Jung G, Naeim A, Ginzburg Y, Pakbaz Z, Walter PB, et al. Immunoassay for human serum erythroferrone. Blood. 2017;130(10):1243–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Camaschella C, Nai A. Ineffective erythropoiesis and regulation of iron status in iron loading anaemias. Br J Haematol. 2016;172(4):512–23.

    Article  CAS  PubMed  Google Scholar 

  30. Cazzola M. Ineffective erythropoiesis and its treatment. Blood. 2022;139(16):2460–70.

    Article  CAS  Google Scholar 

  31. Kautz L, Jung G, Du X, Gabayan V, Chapman J, Nasoff M, et al. Erythroferrone contributes to hepcidin suppression and iron overload in a mouse model of β-thalassemia. Blood. 2015;126(17):2031–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Coffey R, Jung G, Olivera JD, Karin G, Pereira RC, Nemeth E, et al. Erythroid overproduction of erythroferrone causes iron overload and developmental abnormalities in mice. Blood. 2022;139(3):439–51.

    Article  CAS  PubMed  Google Scholar 

  33. Babitt JL. Erythroferrone in iron regulation and beyond. Blood. 2022;139(3):319–21.

    Article  CAS  PubMed  Google Scholar 

  34. Castro-Mollo M, Gera S, Ruiz-Martinez M, Feola M, Gumerova A, Planoutene M, et al. The hepcidin regulator erythroferrone is a new member of the erythropoiesis-iron-bone circuitry. Elife. 2021;10: e68217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nai A, Lidonnici MR, Rausa M, Mandelli G, Pagani A, Silvestri L, et al. The second transferrin receptor regulates red blood cell production in mice. Blood. 2015;125(7):1170–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Trombini P, Coliva T, Nemeth E, Mariani R, Ganz T, Biondi A, et al. Effects of plasma transfusion on hepcidin production in human congenital hypotransferrinemia. Haematologica. 2007;92(10):1407–10.

    Article  CAS  PubMed  Google Scholar 

  37. Bartnikas TB, Andrews NC, Fleming MD. Transferrin is a major determinant of hepcidin expression in hypotransferrinemic mice. Blood. 2011;117(2):630–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kawabata H, Yang R, Hirama T, Vuong PT, Kawano S, Gombart AF, et al. Molecular cloning of transferrin receptor 2: a new member of the transferrin receptor-like family. J Biol Chem. 1999;274(30):20826–32.

    Article  CAS  PubMed  Google Scholar 

  39. Camaschella C, Roetto A, Calì A, De Gobbi M, Garozzo G, Carella M, et al. The gene TFR2 is mutated in a new type of haemochromatosis map** to 7q22. Nat Genet. 2000;25(1):14–5.

    Article  CAS  PubMed  Google Scholar 

  40. Nemeth E, Roetto A, Garozzo G, Ganz T, Camaschella C. Hepcidin is decreased in TFR2 hemochromatosis. Blood. 2005;105(4):1803–6.

    Article  CAS  PubMed  Google Scholar 

  41. Girelli D, Trombini P, Busti F, Campostrini N, Sandri M, Pelucchi S, et al. A time course of hepcidin response to iron challenge in patients with HFE and TFR2 hemochromatosis. Haematologica. 2011;96(4):500–6.

    Article  CAS  PubMed  Google Scholar 

  42. Forejtnikovà H, Vieillevoye M, Zermati Y, Lambert M, Pellegrino RM, Guihard S, et al. Transferrin receptor 2 is a component of the erythropoietin receptor complex and is required for efficient erythropoiesis. Blood. 2010;116(24):5357–67.

    Article  PubMed  CAS  Google Scholar 

  43. Rauner M, Baschant U, Roetto A, Pellegrino RM, Rother S, Salbach-Hirsch J, et al. Transferrin receptor 2 controls bone mass and pathological bone formation via BMP and Wnt signaling. Nat Metab. 2019;1(1):111–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Beguin Y. The soluble transferrin receptor: biological aspects and clinical usefulness as quantitative measure of erythropoiesis. Haematologica. 1992;77(1):1–10.

    CAS  PubMed  Google Scholar 

  45. Pagani A, Vieillevoye M, Nai A, Rausa M, Ladli M, Lacombe C, et al. Regulation of cell surface transferrin receptor-2 by iron-dependent cleavage and release of a soluble form. Haematologica. 2015;100(4):458–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. West AP Jr, Bennett MJ, Sellers VM, Andrews NC, Enns CA, Bjorkman PJ. Comparison of the interactions of transferrin receptor and transferrin receptor 2 with transferrin and the hereditary hemochromatosis protein HFE. J Biol Chem. 2000;275(49):38135–8.

    Article  CAS  PubMed  Google Scholar 

  47. Gruszczyk J, Huang RK, Chan L-J, Menant S, Hong C, Murphy JM, et al. Cryo-EM structure of an essential Plasmodium vivax invasion complex. Nature. 2018;559(7712):135–9.

    Article  CAS  PubMed  Google Scholar 

  48. Montemiglio LC, Testi C, Ceci P, Falvo E, Pitea M, Savino C, et al. Cryo-EM structure of the human ferritin-transferrin receptor 1 complex. Nat Commun. 2019;10(1):1121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Jabara HH, Boyden SE, Chou J, Ramesh N, Massaad MJ, Benson H, et al. A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency. Nat Genet. 2016;48(1):74–8.

    Article  CAS  PubMed  Google Scholar 

  50. Levy JE, ** O, Fujiwara Y, Kuo F, Andrews N. Transferrin receptor is necessary for development of erythrocytes and the nervous system. Nat Genet. 1999;21(4):396–9.

    Article  CAS  PubMed  Google Scholar 

  51. Wallace DF, Summerville L, Lusby PE, Subramaniam VN. First phenotypic description of transferrin receptor 2 knockout mouse, and the role of hepcidin. Gut. 2005;54(7):980–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Roetto A, Di Cunto F, Pellegrino RM, Hirsch E, Azzolino O, Bondi A, et al. Comparison of 3 Tfr2-deficient murine models suggests distinct functions for Tfr2-α and Tfr2-β isoforms in different tissues. Blood. 2010;115(16):3382–9.

    Article  CAS  PubMed  Google Scholar 

  53. Fillebeen C, Charlebois E, Wagner J, Katsarou A, Mui J, Vali H, et al. Transferrin receptor 1 controls systemic iron homeostasis by fine-tuning hepcidin expression to hepatocellular iron load. Blood. 2019;133(4):344–55.

    Article  CAS  PubMed  Google Scholar 

  54. Artuso I, Lidonnici MR, Altamura S, Mandelli G, Pettinato M, Muckenthaler MU, et al. Transferrin receptor 2 is a potential novel therapeutic target for β-thalassemia: evidence from a murine model. Blood. 2018;132(21):2286–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Casu C, Pettinato M, Liu A, Aghajan M, Lo Presti V, Lidonnici MR, et al. Correcting β-thalassemia by combined therapies that restrict iron and modulate erythropoietin activity. Blood. 2020;136(17):1968–79.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Guerra A, Parrow N, Mc Veigh P, Fleming R, Ginzburg Y, Rivella S. Obligate N-terminal but not C-terminal monoferric transferrin ameliorates anemia in β-Thalassemic mice. Blood. 2021;138(suppl 1):937.

    Article  Google Scholar 

  57. Mirciov CSG, Wilkins SJ, Hung GCC, Helman SL, Anderson GJ, Frazer DM. Circulating iron levels influence the regulation of hepcidin following stimulated erythropoiesis. Haematologica. 2018;103(10):1616–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Artuso I, Pettinato M, Nai A, Pagani A, Sardo U, Billoré B, et al. Transient decrease of serum iron after acute erythropoietin treatment contributes to hepcidin inhibition by ERFE in mice. Haematologica. 2014;104(3):e87-90.

    Article  Google Scholar 

  59. Nai A, Rubio A, Campanella A, Gourbeyre O, Artuso I, Bordini J, et al. Limiting hepatic Bmp-Smad signaling by matriptase-2 is required for erythropoietin-mediated hepcidin suppression in mice. Blood. 2016;127(19):2327–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li H, Rybicki AC, Suzuka SM, von Bonsdorff L, Breuer W, Hall CB, et al. Transferrin therapy ameliorates disease in β-thalassemic mice. Nat Med. 2010;16(2):177–82.

    Article  CAS  PubMed  Google Scholar 

  61. Casu C, Chessa R, Liu A, Gupta R, Drakesmith H, Fleming R, et al. Minihepcidins improve ineffective erythropoiesis and splenomegaly in a new mouse model of adult β-thalassemia major. Haematologica. 2020;105(7):1835–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Guo S, Casu C, Gardenghi S, Booten S, Aghajan M, Peralta R, et al. Reducing TMPRSS6 ameliorates hemochromatosis and β-thalassemia in mice. J Clin Invest. 2013;123(4):1531–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Arezes J, Foy N, McHugh K, Quinkert D, Benard S, Sawant A, et al. Antibodies against the erythroferrone N-terminal domain prevent hepcidin suppression and ameliorate murine thalassemia. Blood. 2020;135(8):547–57.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Manolova V, Nyffenegger N, Flace A, Altermatt P, Varol A, Doucerain C, et al. Oral ferroportin inhibitor ameliorates ineffective erythropoiesis in a model of β-thalassemia. J Clin Invest. 2019;130(1):491–506.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Cappellini MD, Viprakasit V, Taher AT, Georgiev P, Kuo KHM, Coates T, et al. A phase 3 trial of luspatercept in patients with transfusion-dependent β-Thalassemia. N Engl J Med. 2020;382(13):1219–31.

    Article  CAS  PubMed  Google Scholar 

  66. Eckardt K-U, Agarwal R, Aswad A, Awad A, Block GA, Bacci MR, et al. Safety and efficacy of vadadustat for anemia in patients undergoing dialysis. N Engl J Med. 2021;384(17):1601–12.

    Article  CAS  PubMed  Google Scholar 

  67. Chertow GM, Pergola PE, Farag YMK, Agarwal R, Arnold S, Bako G, et al. Vadadustat in patients with anemia and non–dialysis-dependent CKD. N Engl J Med. 2021;384(17):1589–600.

    Article  CAS  PubMed  Google Scholar 

  68. Ghosh MC, Zhang D-L, Jeong SY, Kovtunovych G, Ollivierre-Wilson H, Noguchi A, et al. Deletion of iron regulatory protein 1 causes polycythemia and pulmonary hypertension in mice through translational derepression of HIF2α. Cell Metab. 2013;17(2):271–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Anderson SA, Nizzi CP, Chang Y-I, Deck KM, Schmidt PJ, Galy B, et al. The IRP1-HIF-2α axis coordinates iron and oxygen sensing with erythropoiesis and iron absorption. Cell Metab. 2013;17(2):282–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ghosh MC, Zhang D-L, Ollivierre WH, Noguchi A, Springer DA, Linehan WM, et al. Therapeutic inhibition of HIF-2α reverses polycythemia and pulmonary hypertension in murine models of human diseases. Blood. 2021;137(18):2509–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang D-L, Wu J, Shah BN, Greutélaers KC, Ghosh MC, Ollivierre H, et al. Erythrocytic ferroportin reduces intracellular iron accumulation, hemolysis, and malaria risk. Science. 2018;359(6383):1520–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang D-L, Ghosh MC, Ollivierre H, Li Y, Rouault TA. Ferroportin deficiency in erythroid cells causes serum iron deficiency and promotes hemolysis due to oxidative stress. Blood. 2018;132(19):2078–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 2014;509(7498):105–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nai A, Lidonnici MR, Federico G, Pettinato M, Olivari V, Carrillo F, et al. NCOA4-mediated ferritinophagy in macrophages is crucial to sustain erythropoiesis in mice. Haematologica. 2021;106(3):795–805.

    CAS  PubMed  Google Scholar 

  75. Ryu M-S, Zhang D, Protchenko O, Shakoury-Elizeh M, Philpott CC. PCBP1 and NCOA4 regulate erythroid iron storage and heme biosynthesis. J Clin Invest. 2017;127(5):1786–97.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Mancias JD, PontanoVaites L, Nissim S, Biancur DE, Kim AJ, Wang X, et al. Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis. Elife. 2015;4: e10308.

    Article  PubMed Central  Google Scholar 

  77. Santana-Codina N, Gableske S, Quiles del Rey M, Małachowska B, Jedrychowski MP, Biancur DE, et al. NCOA4 maintains murine erythropoiesis via cell autonomous and non-autonomous mechanisms. Haematologica. 2019;104(7):1342–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Das NK, Jain C, Sankar A, Schwartz AJ, Santana-Codina N, Solanki S, et al. Modulation of the HIF2α-NCOA4 axis in enterocytes attenuates iron loading in a mouse model of hemochromatosis. Blood. 2022;139(16):2547–52.

    Article  CAS  PubMed  Google Scholar 

  79. Xavier-Ferrucio J, Scanlon V, Li X, Zhang P-X, Lozovatsky L, Ayala-Lopez N, et al. Low iron promotes megakaryocytic commitment of megakaryocytic-erythroid progenitors in humans and mice. Blood. 2019;134(18):1547–57.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Di Buduo CA, Currao M, Pecci A, Kaplan DL, Balduini CL, Balduini A. Revealing eltrombopag’s promotion of human megakaryopoiesis through AKT/ERK-dependent pathway activation. Haematologica. 2016;101(12):1479–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Liu Z-J, Deschmann E, Ramsey HE, Feldman HA, Psaila B, Cooper N, et al. Iron status influences the response of cord blood megakaryocyte progenitors to eltrombopag in vitro. Blood Adv. 2022;6(1):13–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by European Hematology Association (Advanced Research Grant 2020) and Italian Ministry of Health (GR-2019-12369583) to A.N

Author information

Authors and Affiliations

Authors

Contributions

CC conceived the structure of the paper. AP, LS and AN contributed to writing. LS contributed the figure. All authors revised and approved the final version.

Corresponding author

Correspondence to Clara Camaschella.

Ethics declarations

Conflict of interest

A.N. received research funding from Celgene (BMS group). The other authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camaschella, C., Pagani, A., Silvestri, L. et al. The mutual crosstalk between iron and erythropoiesis. Int J Hematol 116, 182–191 (2022). https://doi.org/10.1007/s12185-022-03384-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-022-03384-y

Keywords

Navigation