Log in

Association of differential and site-dependent CpG methylation and diverse expression of DNA methyltransferases with the tissue-specific expression of human β-globin gene in transgenic mice

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Expression of human locus control region (LCR) and β-globin promoter has been recognized as an important factor in time- and tissue-specific expression event. DNA methylation can affect the transcriptional activity of specific genes. To investigate the methylation mechanism in the regulation of LCR and promote expression, this study used a transgenic mouse strain generated previously, in which the hematopoietic-specific expression of the EGFP was driven by human β-globin promoter and under the control of LCR, to examine the CpG methylation pattern in various tissues. The results showed the inverse correlation between the methylated extent and the levels of gene expression in all tested tissues. We also found that the methylated extent of the 10 examined CpG sites was biased along their positions and is more efficient near the transcription start site. Real-time quantitative RT-PCR analysis of DNA methyltransferases (DNMTs) transcripts showed that Dnmt3a and Dnmt3b expressed with a very low level in the hematopoietic tissues that was coincident with the relative higher EGFP expression in these tissues, indicating that the differential expression of DNMTs contributed to the tissue-specific methylated patterns which caused the diverse gene expression in various tissues. These findings provide significant clues to elucidate the mechanism of the regulation on tissue-specific expression of genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li Q, Harju S, Peterson KR. Locus control regions: coming of age at a decade plus. Trends Genet. 1999;15:403–8. doi:10.1016/S0168-9525(99)01780-1.

    Article  PubMed  Google Scholar 

  2. Engel JD, Tanimoto K. Loo**, linking, and chromatin activity: new insights into beta-globin locus regulation. Cell. 2000;100:499–502. doi:10.1016/S0092-8674(00)80686-8.

    Article  CAS  PubMed  Google Scholar 

  3. Eden S, Cedar H. Role of DNA methylation in the regulation of transcription. Curr Opin Genet Dev. 1994;4:255–9. doi:10.1016/S0959-437X(05)80052-8.

    Article  CAS  PubMed  Google Scholar 

  4. Pogribny I, Raiche J, Slovack M, Kovalchuk O. Dose-dependence, sex- and tissue-specificity and persistence of radiation-induced genomic DNA methylation changes. Biochem Biophys Res Commun. 2004;320:1253–6. doi:10.1016/j.bbrc.2004.06.081.

    Article  CAS  PubMed  Google Scholar 

  5. Majumder S, Ghoshal K, Datta J, Smith DS, Bai S, Jacob ST. Role of DNA methyltransferases in regulation of human ribosomal RNA gene transcription. J Biol Chem. 2006;31:22062–72. doi:10.1074/jbc.M601155200.

    Article  Google Scholar 

  6. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferase Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–57. doi:10.1016/S0092-8674(00)81656-6.

    Article  CAS  PubMed  Google Scholar 

  7. Enver T, Zhang JW, Papayannopoulou T, Stamatoyannopoulos G. DNA methylation: a secondary event in globin gene switching? Genes Dev. 1988;2:698–706. doi:10.1101/gad.2.6.698.

    Article  CAS  PubMed  Google Scholar 

  8. Fathallah H, Portnoy G, Atweh GF. Epigenetic analysis of the human alpha- and beta-globin gene clusters. Blood Cells Mol Dis. 2008;40:166–73. doi:10.1016/j.bcmd.2007.08.001.

    Article  CAS  PubMed  Google Scholar 

  9. Fathallah H, Portnoy G, Atweh GF. DNA hypomethylation therapy for hemoglobin disorders: molecular mechanisms and clinical applications. Blood Rev. 2006;20:227–34. doi:10.1016/j.blre.2006.01.002.

    Article  CAS  PubMed  Google Scholar 

  10. Fridman AL, Rosati R, Li Q, Tainsky MA. Epigenetic and functional analysis of IGFBP3 and IGFBPrP1 in cellular immortalization. Biochem Biophys Res Commun. 2007;357:785–91. doi:10.1016/j.bbrc.2007.04.019.

    Article  CAS  PubMed  Google Scholar 

  11. Kulaeva OI, Draghici S, Tang L, Kraniak JM, Land SJ, Tainsky MA. Epigenetic silencing of multiple interferon pathway genes after cellular immortalization. Oncogene. 2003;22:4118–27. doi:10.1038/sj.onc.1206594.

    Article  CAS  PubMed  Google Scholar 

  12. Kim AR, Kiefer CM, Dean A. Distinctive signatures of histone methylation in transcribed coding and noncoding human globin sequences. Mol Cell Biol. 2007;27:1271–9. doi:10.1128/MCB.01684-06.

    Article  CAS  PubMed  Google Scholar 

  13. Kim AR, Zhao H, Ifrim I, Dean A. β-globin intergenic transcription and histone acetylation dependent on an enhancer. Mol Cell Biol. 2007;27:2980–6. doi:10.1128/MCB.02337-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jia CP, Huang SZ, Yan JB, **ao YP, Ren ZR, Zeng YT. Effects of human locus control region elements HS2 and HS3 on human beta-globin expression in transgenic mouse. Blood Cells Mol Dis. 2003;31:360–9. doi:10.1016/j.bcmd.2003.07.001.

    Article  CAS  PubMed  Google Scholar 

  15. Zeng F, Chem MJ, Baldwin DA, Gong ZJ, Yan JB, Qian H, et al. Multiorgan engraftment and differentiation of human cord blood CD34+lin cells in goats assessed by gene expression profiling. Proc Natl Acad Sci USA. 2006;103(20):7801–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clark SJ, Harrison J, Paul CL, Frommer M. High sensitivity map** of methylated cytosines. Nucleic Acids Res. 1994;22:2990–7. doi:10.1093/nar/22.15.2990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee YH, Sauer B, Gonzalez FJ, Dwarfism L. Non-insulin-dependent diabetes mellitus in the Hnf-1α knockout mouse. Mol Cell Biol. 1998;18:3059–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yokomori N, Nishio K, Aida K, Negishi M. Transcriptional regulation by HNF-4 of the steroid 15 alpha-hydroxylase P450 (Cyp2a-4) gene in mouse liver. J Steroid Biochem Mol Biol. 1997;62:307–14. doi:10.1016/S0960-0760(97)00048-4.

    Article  CAS  PubMed  Google Scholar 

  19. Pontoglio M, Faust DM, Doyen A, Yaniv M, Weiss MC. Hepatocyte nuclear factor 1alpha gene inactivation impairs chromatin remodeling and demethylation of the phenylalanine hydroxylase gene. Mol Cell Biol. 1997;17:4948–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Murayama A, Sakura K, Nakama M, Kayoko YT, Etsuko F, Yukiyo T, et al. A specific CpG site demethylation in the human interleukin 2 gene promoter is an epigenetic memory. EMBO J. 2006;25:1081–92. doi:10.1038/sj.emboj.7601012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Caiafa P, Zampieri M. DNA methylation and chromatin structure: the puzzling CpG islands. J Cell Biochem. 2005;94:257–65. doi:10.1002/jcb.20325.

    Article  CAS  PubMed  Google Scholar 

  22. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates and environmental signals. Nat Genet. 2003;33:245–54. doi:10.1038/ng1089.

    Article  CAS  PubMed  Google Scholar 

  23. Shiota K. DNA methylation profiles of CpG islands for cellular differentiation and development in mammals. Cytogenet Genome Res. 2004;105:325–34. doi:10.1159/000078205.

    Article  CAS  PubMed  Google Scholar 

  24. Bushnell DA, Westover KD, Davis RE, Kornberg RD. Structural basis of transcription: an RNA polymerase II-TFIIB cocrystal at 4.5 Angstroms. Science. 2004;303:983–8. doi:10.1126/science.1090838.

    Article  CAS  PubMed  Google Scholar 

  25. Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y, et al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science. 2003;302:890–3. doi:10.1126/science.1090842.

    Article  CAS  PubMed  Google Scholar 

  26. Hsieh CL. Evidence that protein binding specifies sites of DNA demethylation. Mol Cell Biol. 1999;19:46–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gidekel S, Bergman Y. A unique developmental pattern of Oct-3/4 DNA methylation is controlled by a cis-demodification element. J Biol Chem. 2002;277:34521–30. doi:10.1074/jbc.M203338200.

    Article  CAS  PubMed  Google Scholar 

  28. Lock LF, Takagi N, Martin GR. Methylation of the Hprt gene on the inactive X occurs after chromosome inactivation. Cell. 1987;48:39–46. doi:10.1016/0092-8674(87)90353-9.

    Article  CAS  PubMed  Google Scholar 

  29. Fathallah H, Weinberg RS, Galperin Y, Sutton M, Atweh GF. Role of epigenetic modifications in normal globin gene regulation and butyrate-mediated induction of fetal hemoglobin. Blood. 2007;110:3391–7. doi:10.1182/blood-2007-02-076091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Chinese National Program (Grant No. 2004CB518806, 2007AA02Z400), State and Shanghai Academic Leading Discipline (B204).

Conflict of interest statement

The authors declare that there is no conflict of interest that would prejudice the impartiality of this scientific work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-tao Zeng.

About this article

Cite this article

Yan, Zh., Gong, Xl., Guo, Xb. et al. Association of differential and site-dependent CpG methylation and diverse expression of DNA methyltransferases with the tissue-specific expression of human β-globin gene in transgenic mice. Int J Hematol 89, 414–421 (2009). https://doi.org/10.1007/s12185-009-0319-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-009-0319-0

Keywords

Navigation