Log in

Proteomic modulation in breast tumors after metformin exposure: results from a “window of opportunity” trial

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

Reverse Phase Protein Array (RPPA) is a high-throughput antibody-based technique to assess cellular protein activity. The goal of this study was to assess protein marker changes by RPPA in tumor tissue from a pre-surgical metformin trial in women with operable breast cancer (BC).

Methods

In an open-label trial, metformin 1500-mg PO daily was administered prior to resection in 35 non-diabetic patients with stage 0–III BC, body mass index ≥25 kg/m2. For RPPA, formalin-fixed paraffin-embedded (FFPE) samples were probed with 160 antibodies. Paired and two-sample t-tests were performed (p ≤ 0.05). Multiple comparisons were adjusted for by fixing the false discovery rate at 25 %. We evaluated whether pre- and post-metformin changes of select markers by RPPA were identified by immunohistochemistry (IHC) in these samples. We also assessed for these changes by western blot in metformin-treated BC cell lines.

Results

After adjusting for multiple comparisons in the 32 tumors from metformin-treated patients vs. 34 untreated historical controls, 11 proteins were significantly different between cases vs. controls: increases in Raptor, C-Raf, Cyclin B1, Cyclin D1, TRFC, and Syk; and reductions in pMAPKpT202,Y204, JNKpT183,pT185, BadpS112, PKC.alphapS657, and SrcpY416. Cyclin D1 change after metformin by IHC was not observed. In cell lines, reductions in JNKpT183 and BadpS112 were seen, with no change in Cyclin D1 or Raptor.

Conclusions

These results suggest that metformin modulates apoptosis/cell cycle, cell signaling, and invasion/motility. These findings should be assessed in larger metformin trials. If confirmed, associations between these changes and BC clinical outcome should be evaluated.

Clinicaltrials.gov identifier

NCT00930579.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bowker SL, Majumdar SR, Veugelers P, Johnson JA. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care. 2006;29(2):254–8.

    Article  PubMed  Google Scholar 

  2. Hou G, Zhang S, Zhang X, Wang P, Hao X, Zhang J. Clinical pathological characteristics and prognostic analysis of 1013 breast cancer patients with diabetes. Breast Cancer Res Treat. 2013;137(3):807–16. doi:10.1007/s10549-012-2404-y.

    Article  CAS  PubMed  Google Scholar 

  3. Liu B, Fan Z, Edgerton SM, Deng X-S, Alimova IN, Lind SE, et al. Metformin induces unique biological and molecular responses in triple negative breast cancer cells. Cell Cycle. 2009;8(13):2031–40.

    Article  CAS  PubMed  Google Scholar 

  4. Jiralerspong S, Palla SL, Giordano SH, Meric-Bernstam F, Liedtke C, Barnett CM, et al. Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol. 2009;27(20):3297–302. doi:10.1200/JCO.2009.19.6410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zakikhani M, Dowling R, Fantus IG, Sonenberg N, Pollak M. Metformin Is an AMP Kinase-Dependent Growth Inhibitor for Breast Cancer Cells. Cancer Res. 2006;66(21):10269–73. doi:10.1158/0008-5472.can-06-1500.

    Article  CAS  PubMed  Google Scholar 

  6. Jung J-W, Park S-B, Lee S-J, Seo M-S, Trosko JE, Kang K-S. Metformin represses self-renewal of the human breast carcinoma stem cells via inhibition of estrogen receptor-mediated OCT4 expression. PLoS One. 2011;6(11):e28068. doi:10.1371/journal.pone.0028068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hirsch HA, Iliopoulos D, Struhl K. Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proc Natl Acad Sci. 2013;110(3):972–7. doi:10.1073/pnas.1221055110.

    Article  CAS  PubMed  Google Scholar 

  8. Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res. 2009;69(19):7507–11. doi:10.1158/0008-5472.can-09-2994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108(8):1167–74. doi:10.1172/JCI13505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kalinsky K, Crew KD, Refice S, **ao T, Wang A, Feldman SM, et al. Presurgical trial of metformin in overweight and obese patients with newly diagnosed breast cancer. Cancer Invest. 2014;32(4):150–7. doi:10.3109/07357907.2014.889706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bonanni B, Puntoni M, Cazzaniga M, Pruneri G, Serrano D, Guerrieri-Gonzaga A, et al. Dual effect of metformin on breast cancer proliferation in a randomized presurgical trial. J Clin Oncol. 2012;30(21):2593–600. doi:10.1200/jco.2011.39.3769.

    Article  CAS  PubMed  Google Scholar 

  12. Hadad S, Iwamoto T, Jordan L, Purdie C, Bray S, Baker L, et al. Evidence for biological effects of metformin in operable breast cancer: a pre-operative, window-of-opportunity, randomized trial. Breast Cancer Res Treat. 2011;128(3):783–94. doi:10.1007/s10549-011-1612-1.

    Article  CAS  PubMed  Google Scholar 

  13. Niraula S, Dowling RO, Ennis M, Chang M, Done S, Hood N, et al. Metformin in early breast cancer: a prospective window of opportunity neoadjuvant study. Breast Cancer Res Treat. 2012;135(3):821–30. doi:10.1007/s10549-012-2223-1.

    Article  CAS  PubMed  Google Scholar 

  14. Kalinsky K, Hershman DL. Cracking open window of opportunity trials. J Clin Oncol. 2012;30(21):2573–5. doi:10.1200/JCO.2012.42.3293.

    Article  CAS  PubMed  Google Scholar 

  15. Dowsett M, Smith IE, Ebbs SR, Dixon JM, Skene A, Griffith C, et al. Short-term changes in Ki-67 during neoadjuvant treatment of primary breast cancer with anastrozole or tamoxifen alone or combined correlate with recurrence-free survival. Clin Cancer Res. 2005;11(2 Pt 2):951s–8s.

    CAS  PubMed  Google Scholar 

  16. Dowsett M, Smith IE, Ebbs SR, Dixon JM, Skene A, A’Hern R, et al. Prognostic value of Ki67 expression after short-term presurgical endocrine therapy for primary breast cancer. J Natl Cancer Inst. 2007;99(2):167–70.

    Article  CAS  PubMed  Google Scholar 

  17. Dowsett M, Ebbs SR, Dixon JM, Skene A, Griffith C, Boeddinghaus I, et al. Biomarker changes during neoadjuvant anastrozole, tamoxifen, or the combination: influence of hormonal status and HER-2 in breast cancer–a study from the IMPACT trialists. J Clin Oncol. 2005;23(11):2477–92. doi:10.1200/JCO.2005.07.559.

    Article  CAS  PubMed  Google Scholar 

  18. Dowsett M. Optimizing the implementation of future treatment using surrogate end-points. Breast Cancer Res. 2008;10(Suppl 4):S26. doi:10.1186/bcr2186.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tibes R, Qiu Y, Lu Y, Hennessy B, Andreeff M, Mills GB, et al. Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol Cancer Ther. 2006;5(10):2512–21. doi:10.1158/1535-7163.MCT-06-0334.

    Article  CAS  PubMed  Google Scholar 

  20. Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M, et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res. 2008;68(15):6084–91. doi:10.1158/0008-5472.CAN-07-6854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hennessy BT, Lu Y, Gonzalez-Angulo AM, Carey MS, Myhre S, Ju Z, et al. A technical assessment of the utility of reverse phase protein arrays for the study of the functional proteome in non-microdissected human breast cancers. Clin Proteomics. 2010;6(4):129–51. doi:10.1007/s12014-010-9055-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meric-Bernstam F, Akcakanat A, Chen H, Sahin A, Tarco E, Carkaci S, et al. Influence of biospecimen variables on proteomic biomarkers in breast cancer. Clin Cancer Res. 2014;20(14):3870–83. doi:10.1158/1078-0432.CCR-13-1507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guo H, Liu W, Ju Z, Tamboli P, Jonasch E, Mills GB, et al. An efficient procedure for protein extraction from formalin-fixed, paraffin-embedded tissues for reverse phase protein arrays. Proteome Sci. 2012;10(1):56. doi:10.1186/1477-5956-10-56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Quackenbush J. Microarray data normalization and transformation. Nat Genet. 2002;32(Suppl):496–501. doi:10.1038/ng1032ng1032.

    Article  CAS  PubMed  Google Scholar 

  25. Hammond MEH, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, et al. American Society of Clinical Oncology/College of American Pathologists Guideline Recommendations for Immunohistochemical Testing of Estrogen and Progesterone Receptors in Breast Cancer. J Clin Oncol. 2010;28(16):2784–95. doi:10.1200/jco.2009.25.6529.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hammond ME, Hayes DF, Wolff AC. Clinical Notice for American Society of Clinical Oncology-College of American Pathologists Guideline Recommendations on ER/PgR and HER2 Testing in Breast Cancer. J Clin Oncol. 2011;29(15):e458. doi:10.1200/jco.2011.35.2245.

    Article  PubMed  Google Scholar 

  27. Hu J, He X, Baggerly KA, Coombes KR, Hennessy BT, Mills GB. Non-parametric quantification of protein lysate arrays. Bioinformatics. 2007;23(15):1986–94. doi:10.1093/bioinformatics/btm283.

    Article  CAS  PubMed  Google Scholar 

  28. Raghav KP, Wang W, Liu S, Chavez-MacGregor M, Meng X, Hortobagyi GN, et al. cMET and phospho-cMET protein levels in breast cancers and survival outcomes. Clin Cancer Res. 2012;18(8):2269–77. doi:10.1158/1078-0432.CCR-11-2830.

    Article  CAS  PubMed  Google Scholar 

  29. Alimova IN, Liu B, Fan Z, Edgerton SM, Dillon T, Lind SE, et al. Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest in vitro. Cell Cycle. 2009;8(6):909–15.

    Article  CAS  PubMed  Google Scholar 

  30. Morgillo F, Sasso FC, Della Corte CM, Vitagliano D, D’Aiuto E, Troiani T, et al. Synergistic effects of metformin treatment in combination with gefitinib, a selective EGFR tyrosine kinase inhibitor, in LKB1 wild-type NSCLC cell lines. Clin Cancer Res. 2013;19(13):3508–19. doi:10.1158/1078-0432.CCR-12-2777.

    Article  CAS  PubMed  Google Scholar 

  31. Hsieh SC, Tsai JP, Yang SF, Tang MJ, Hsieh YH. Metformin inhibits the invasion of human hepatocellular carcinoma cells and enhances the chemosensitivity to sorafenib through a downregulation of the ERK/JNK-mediated NF-kappaB-dependent pathway that reduces uPA and MMP-9 expression. Amino Acids. 2014;46(12):2809–22. doi:10.1007/s00726-014-1838-4.

    Article  CAS  PubMed  Google Scholar 

  32. Kim YH, Hwang JH, Kim KS, Noh JR, Choi DH, Kim DK, et al. Metformin ameliorates acetaminophen hepatotoxicity via Gadd45beta-dependent regulation of JNK signaling in mice. J Hepatol. 2015;63(1):75–82. doi:10.1016/j.jhep.2015.02.008.

    Article  CAS  PubMed  Google Scholar 

  33. Hwang YP, Jeong HG. Metformin blocks migration and invasion of tumour cells by inhibition of matrix metalloproteinase-9 activation through a calcium and protein kinase Calpha-dependent pathway: phorbol-12-myristate-13-acetate-induced/extracellular signal-regulated kinase/activator protein-1. Br J Pharmacol. 2010;160(5):1195–211. doi:10.1111/j.1476-5381.2010.00762.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cazzaniga M, DeCensi A, Pruneri G, Puntoni M, Bottiglieri L, Varricchio C, et al. The effect of metformin on apoptosis in a breast cancer presurgical trial. Br J Cancer. 2013;109(11):2792–7. doi:10.1038/bjc.2013.657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yue W, Zheng X, Lin Y, Yang CS, Xu Q, Carpizo D, et al. Metformin combined with aspirin significantly inhibit pancreatic cancer cell growth in vitro and in vivo by suppressing anti-apoptotic proteins Mcl-1 and Bcl-2. Oncotarget. 2015;6(25):21208–24. doi:10.18632/oncotarget.4126.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yasmeen A, Beauchamp MC, Piura E, Segal E, Pollak M, Gotlieb WH. Induction of apoptosis by metformin in epithelial ovarian cancer: involvement of the Bcl-2 family proteins. Gynecol Oncol. 2011;121(3):492–8. doi:10.1016/j.ygyno.2011.02.021.

    Article  CAS  PubMed  Google Scholar 

  37. Chaudhary SC, Kurundkar D, Elmets CA, Kopelovich L, Athar M. Metformin, an antidiabetic agent reduces growth of cutaneous squamous cell carcinoma by targeting mTOR signaling pathway. Photochem Photobiol. 2012;88(5):1149–56. doi:10.1111/j.1751-1097.2012.01165.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Malki A, Youssef A. Antidiabetic drug metformin induces apoptosis in human MCF breast cancer via targeting ERK signaling. Oncol Res. 2011;19(6):275–85.

    Article  PubMed  Google Scholar 

  39. Brodowska K, Theodoropoulou S, Meyer ZuHorste M, Paschalis E, Takeuchi K, Scott G, et al. Effects of metformin on retinoblastoma growth in vitro and in vivo. Int J Oncol. 2014;45(6):2311–24. doi:10.3892/ijo.2014.2650.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sikka A, Kaur M, Agarwal C, Deep G, Agarwal R. Metformin suppresses growth of human head and neck squamous cell carcinoma via global inhibition of protein translation. Cell Cycle. 2012;11(7):1374–82. doi:10.4161/cc.19798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ben Sahra I, Laurent K, Loubat A, Giorgetti-Peraldi S, Colosetti P, Auberger P, et al. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene. 2008;27(25):3576–86. doi:10.1038/sj.onc.1211024.

  42. Cai X, Hu X, Cai B, Wang Q, Li Y, Tan X, et al. Metformin suppresses hepatocellular carcinoma cell growth through induction of cell cycle G1/G0 phase arrest and p21CIP and p27KIP expression and downregulation of cyclin D1 in vitro and in vivo. Oncol Rep. 2013;30(5):2449–57. doi:10.3892/or.2013.2718.

    CAS  PubMed  Google Scholar 

  43. Hadad SM, Coates P, Jordan LB, Dowling RJ, Chang MC, Done SJ, et al. Evidence for biological effects of metformin in operable breast cancer: biomarker analysis in a pre-operative window of opportunity randomized trial. Breast Cancer Res Treat. 2015;150(1):149–55. doi:10.1007/s10549-015-3307-5.

    Article  CAS  PubMed  Google Scholar 

  44. Hadad SM, Hardie DG, Appleyard V, Thompson AM. Effects of metformin on breast cancer cell proliferation, the AMPK pathway and the cell cycle. Clin Transl Oncol. 2014;16(8):746–52. doi:10.1007/s12094-013-1144-8.

    Article  CAS  PubMed  Google Scholar 

  45. Arnedos M, Nerurkar A, Osin P, A’Hern R, Smith IE, Dowsett M. Discordance between core needle biopsy (CNB) and excisional biopsy (EB) for estrogen receptor (ER), progesterone receptor (PgR) and HER2 status in early breast cancer (EBC). Ann Oncol. 2009;20(12):1948–52. doi:10.1093/annonc/mdp234.

    Article  CAS  PubMed  Google Scholar 

  46. Pinhel IF, Macneill FA, Hills MJ, Salter J, Detre S, A’Hern R, et al. Extreme loss of immunoreactive p-Akt and p-Erk1/2 during routine fixation of primary breast cancer. Breast Cancer Res. 2010;12(5):R76. doi:10.1186/bcr2719.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The Breast Cancer Research Foundation and New York Obesity Research Council funded this research. This publication was also supported by the National Center for Advancing Translational Sciences, National Institutes of Health, through Grant Number KL2 TR000081. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kalinsky.

Ethics declarations

Informed consent

Informed consent was obtained from all individual participants included in the study.

Research involving human participants and/or animals

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Conflict of interest

There are no conflicts of interest to declare for this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 57 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinsky, K., Zheng, T., Hibshoosh, H. et al. Proteomic modulation in breast tumors after metformin exposure: results from a “window of opportunity” trial. Clin Transl Oncol 19, 180–188 (2017). https://doi.org/10.1007/s12094-016-1521-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-016-1521-1

Keywords

Navigation