Log in

Effect of surgical resection of metastatic disease on immune tolerance to cancer. How a systemic disease could be controlled by a local therapy

  • Review
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Surgery represents the only chance of cure for patients with colorectal liver metastases. The results of expanded indications for surgical treatment revealed that even advanced disease can be cured in a significant percentage of cases. What is the explanation for this systemic impact of a local treatment such as surgery? What is different in those patients who can be cured by resection? In this review we analyse the available evidence of the complex relationship between the growing tumour and the immune system. Special attention is directed to the role of T regulatory cells (Tregs) recruited by the tumour to construct a tolerogenic microenvironment in which to grow. Based on the published data we developed the hypothesis that surgery breaks the tumour immune tolerance status because it not only removes the tumour, but also the protective shield of T regulatory cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wagner J, Adson M, Van Heerden J et al (1984) The natural history of hepatic metastases from colorectal cancer. A comparison with resective treatment. Ann Surg 199:502–504

    Article  PubMed  CAS  Google Scholar 

  2. Weber J, Bachelier P, Oussoultzoglou E et al (2003) Simultaneous resection of colorectal primary and synchronous liver metastases. Br J Surg 90:956–962

    Article  PubMed  CAS  Google Scholar 

  3. Figueras J, Valls C, Rafecas A et al (2001) Resection rate and effect of postoperative chemotherapy on survival after surgery for colorectal liver metastases. Br J Surg 88:980–985

    Article  PubMed  CAS  Google Scholar 

  4. Poston G, Adam R, Alberts S et al (2005) Oncosurge: a strategy for improving resectability with curative intent in mestastatic colorectal cancer. J Clin Oncol 23:7125–7134

    Article  PubMed  Google Scholar 

  5. Figueras J, Torras J, Valls C et al (2007) Surgical resection of colorectal liver metastases in patients with expanded indications. A single-center experience with 501 patients. Dis Colon Rectum 50:478–488

    Article  PubMed  Google Scholar 

  6. Bismuth E, Adam R, Levi F et al (1996) Resection of nonresectable liver metastases from colorectal cancer after neoadjuvant chemotherapy. Ann Surg 224:509–520

    Article  PubMed  CAS  Google Scholar 

  7. Adam R, Delvart V, Pascal G et al (2004) Rescue surgery for unresectable colorectal liver metastases downstaged by chemotherapy. A model to predict longterm survival. Ann Surg 240:644–657

    Article  PubMed  Google Scholar 

  8. Campi G, Crosti M, Consogno G et al (2003) CD4+ T cells from healthy subjects and colon cancer patients recognize a carcinoembryonic antigen-specific immunodominant epitope. Cancer Res 63:8481–8486

    PubMed  CAS  Google Scholar 

  9. Schmitt E, Parcellier A, Ghiringhelli F et al (2004) Increased immunogenicity of colon cancer cells by selective depletion of cytochrome C. Cancer Res 64:2705–2711

    Article  PubMed  CAS  Google Scholar 

  10. Banerjea A, Bustin S, Dorudi S (2005) The immunogenicity of colorectal cancer with high-degree microsatellite instability. World J Surg Oncol 3:26

    Article  PubMed  Google Scholar 

  11. Shunyakov L, Ryan C, Sahasrabude D et al (2004) The influence of host response in colorectal cancer prognosis. Clin Colorectal Cancer 4:38–45

    PubMed  CAS  Google Scholar 

  12. Jass J, Love S, Northover J (1987) A new prognostic classification of rectal cancer. Lancet 1:1303–1306

    Article  PubMed  CAS  Google Scholar 

  13. Naito Y, Saito K, Shiba K et al (1998) CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res 58:3491–3494

    PubMed  CAS  Google Scholar 

  14. Evans C, Dalgleish A, Kumar D (2006) Immune suppression and colorectal cancer. Aliment Pharmacol Ther 8:1163–1177

    Article  CAS  Google Scholar 

  15. Hensler T, Hecker H, Heeg K et al (1997) Distinct mechanisms of immunosuppression as a consequence of major surgery. Infect Immun 65:2283–2291

    PubMed  CAS  Google Scholar 

  16. Stalder M, Birsan T, Hausen B et al (2005) Immunosuppressive effects of surgery assessed by flow cytometry in nonhuman primates after nephrectomy. Transpl Intern 18:1158–1165

    Article  Google Scholar 

  17. Weighardt H, Heidecke C, Emmanuilidis K et al (2000) Sepsis after major visceral surgery is associated with sustained and interferon-gamma-resistant defects of monocyte cytokine production. Surgery 127:309–315

    Article  PubMed  CAS  Google Scholar 

  18. Heidecke C, Weighardt H, Hensler T et al (2000) Immune paralysis of T-lymphocytes and monocytes in postoperative abdominal sepsis. Correlation of immune function with survival. Chirurg 71:159–165

    Article  PubMed  CAS  Google Scholar 

  19. O’sullivan S, Lederer J, Horgan A et al (1995) Major injury leads to predominance of the T helper-2 lymphocyte phenotype and diminished interleukin-12 production associated with decreased resistance to infection. Ann Surg 222:482–490

    Article  PubMed  CAS  Google Scholar 

  20. Spolarics Z, Siddiqi M, Siegel J et al (2003) Depressed interleukin-12-producing activity by monocytes correlates with adverse clinical course and a shift toward Th2-type lymphocyte pattern in severely injured male trauma patients. Crit Care Med 31:1722–1729

    Article  PubMed  CAS  Google Scholar 

  21. Lyons A, Kelly J, Rodrick M et al (1997) Major injury induces increased production of interleukin-10 by cells of the immune system with a negative impact on resistance to infection. Ann Surg 226:450–458; discussion 458–460

    Article  PubMed  CAS  Google Scholar 

  22. Lyons A, Goebel A, Mannick J et al (1999) Protective effects of early interleukin-10 antagonism on injury-induced immune dysfunction. Arch Surg 134:1317–1323, discussion 1324

    Article  PubMed  CAS  Google Scholar 

  23. Kelly JL, Lyons A, Soberg C et al (1997) Anti-interleukin-10 antibody restores burn-induced defects in T cell function. Surgery 122:146–152

    Article  PubMed  CAS  Google Scholar 

  24. Kawaida H, Kono K, Takahashi A et al (2005) Distribution of CD4+CD25+high regulatory T cells in tumor-draining lymph nodes in patients with gastric cancer. J Surg Res 124:151–157

    Article  PubMed  CAS  Google Scholar 

  25. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6:295–307

    Article  PubMed  CAS  Google Scholar 

  26. Shimizu J, Yamazaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163:5211–5218

    PubMed  CAS  Google Scholar 

  27. Casares N, Arribillaga L, Sarobe P et al (2003) CD4+/CD25+ regulatory cells inhibit activation of tumour-primed CD4+ T cells with IFN-gamma-dependent antiangiogenic activity, as well as long-lasting tumour immunity elicited by peptide vaccination. J Immunol 171:5931–5939

    PubMed  CAS  Google Scholar 

  28. Woo E, Chu Ch, Goletz T et al (2001) Regulatory CD4+CD25+ T cells in tumors from patients with early-stage non-small cell lung cancer and late stage ovarian cancer. Cancer Res 61:4766–4772

    PubMed  CAS  Google Scholar 

  29. Okita R, Saeki T, Takashima S et al (2005) CD4+CD25+ regulatory T cells in the peripheral blood of patients with breast cancer and non-small cell lung cancer. Oncol Rep 14:1269–1273

    PubMed  CAS  Google Scholar 

  30. Ko K, Yamazaki S, Nakamura K et al (2005) Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating FoxP3CD25+CD4+ regulatory T cells. J Exp Med 202:885–891

    Article  PubMed  CAS  Google Scholar 

  31. Curiel T, Coukos G, Zou L et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    Article  PubMed  CAS  Google Scholar 

  32. Kobayashi N, Hiraoka N, Yamagami W et al (2007) FOXP+regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin Cancer Res 13:902–911

    Article  PubMed  CAS  Google Scholar 

  33. Yang X, Yamagiwa S, Ichida T et al (2006) Increase of CD4+CD25+ regulatory T cells in the liver of patients with hepatocellular carcinoma. J Hepatol 45:254–262

    Article  PubMed  CAS  Google Scholar 

  34. Unitt E, Rushbrook S, Marshall A et al (2005) Compromised lymphocytes infiltrate hepatocellular carcinoma: the role of T-regulatory cells. Hepatology 41:722–730

    Article  PubMed  CAS  Google Scholar 

  35. Shevach E (2004) Fatal attraction: tumors beckon regulatory T cells. Nat Med 10:900–901

    Article  PubMed  CAS  Google Scholar 

  36. Liyanage U, Goedegebuure P, Moore T et al (2006) Increased prevalence of regulatory T cells (Tregs) is induced by pancreas adenocarcinoma. J Immunother 29:416–424

    Article  PubMed  Google Scholar 

  37. von Boehmer H (2003) Dynamics of suppressor T cells: in vivo veritas. J Exp Med 198:845–849

    Article  CAS  Google Scholar 

  38. Kilinc M, Aulakh K, Nair R et al (2006) Reversing tumor immune suppression with intratumoral IL-12: activation of tumor-associated T effector/memory cells, induction of T suppressor apoptosis, and infiltration of CD+ T effectors. J Immunol 177:6962–6973

    PubMed  CAS  Google Scholar 

  39. Correale P, Cusi M, Tsang K et al (2005) Chemo-immunotherapy of metastatic colorectal carcinoma with Gemcitabine plus FOLFOX 4 followed by subcutaneous granulocyte macrophage colony-stimulating factor and interleukin-2, induces strong immunologic and antitumor activity in metastatic colon cancer patients. J Clin Oncol 23:8950–8958

    Article  PubMed  CAS  Google Scholar 

  40. Jewell A (2005) Is the liver an important site for the development of immune tolerance to tumours? Med Hypotheses 64:751–754

    Article  PubMed  CAS  Google Scholar 

  41. Bowen D, Zen M, Holz L et al (2004) The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity. J Clin Invest 114:701–712

    PubMed  CAS  Google Scholar 

  42. Bowen D, McCaughan G, Bertolino P (2005) Intrahepatic immunity: a tale of two sites? Trends Immunol 26:512–517

    Article  PubMed  CAS  Google Scholar 

  43. Bertolino P, McCaughan G, Bowen D (2002) Role of primary intrahepatic T cell activation in the “liver tolerance effect”. Immunol Cell Biol 80:84–92

    Article  PubMed  Google Scholar 

  44. Yoshimura N, Matsui S, Hamashima T et al (1990) The effects of perioperative portal venous inoculation with donor lymphocytes on renal allograft survival in the rat. Specific prolongation of donor grafts and suppressor factor in the serum. Transplantation 49:167–171

    Article  PubMed  CAS  Google Scholar 

  45. Katz S, Pillarisetty V, Bleier J et al (2004) Liver sinusoidal endothelial cells are insufficient to activate T cells. J Immunol 173:230–235

    PubMed  CAS  Google Scholar 

  46. Sasada T, Kimura M, Yoshida Y et al (2003) CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression. Cancer 98:1089–1099

    Article  PubMed  Google Scholar 

  47. Ichihara F, Kono K, Takahashi A et al (2003) Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin Cancer Res 9:4404–4408

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. D. González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, H.D., Figueras, J. Effect of surgical resection of metastatic disease on immune tolerance to cancer. How a systemic disease could be controlled by a local therapy. Clin Transl Oncol 9, 571–577 (2007). https://doi.org/10.1007/s12094-007-0105-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-007-0105-5

Key words

Navigation