Log in

Morphometric Analysis of Temporal Bone Radiology for Cochlear Implant Candidacy

  • Original Article
  • Published:
Indian Journal of Otolaryngology and Head & Neck Surgery Aims and scope Submit manuscript

Abstract

Cochlear Implantation (CI) is a well-accepted treatment for severe-to-profound sensorineural hearing loss, refractory to conventional hearing amplification. Pre-operative Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) play pivotal roles in patient selection to rule out findings that preclude surgery or identify conditions that may impact the surgical procedure. A prospective study was carried out in a tertiary care center over three years, from January 2020 to January 2023. One hundred and ninety (380 ears) patients’ High-Resolution Computed Tomography (HRCT) studies of the temporal bone and MRI scans of the auditory pathways were analyzed. A reporting format was followed which was devised by a team of senior implant surgeons and senior neuro-radiologists. Our study aims to provide a comprehensive radiologic protocol for CI candidacy including normative data for the essential morphometrics in the Indian setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Joshi VM, Navlekar SK, Kishore GR, Reddy KJ, Kumar EC (2012) CT and MR imaging of the inner ear and brain in children with congenital sensorineural hearing loss. Radiographics 32:683–698

    Article  PubMed  Google Scholar 

  2. Witte RJ, Lane JI, Driscoll CL, Lundy LB, Bernstein MA, Kotsenas AL et al (2003) Pediatric and adult cochlear implantation. Radiographics 23:1185–1200

    Article  PubMed  Google Scholar 

  3. Widmann G, Dejaco D, Luger A et al (2020) Pre- and post-operative imaging of cochlear implants: a pictorial review. Insights Imaging 11:93. https://doi.org/10.1186/s13244-020-00902-6

    Article  PubMed  PubMed Central  Google Scholar 

  4. Casselman JW, Veillon F (2012) Temporal bone and auditory pathways. In: Hodler J, von Schulthess GK, Zollikofer CL (eds) Diseases of the brain, head & neck, Spine 2012–2015. Springer, Milano

    Google Scholar 

  5. Alexiades G, Dhanasingh A, Jolly C (2014) Method to estimate the complete and two-turn cochlear duct length. Otol Neurotol 36:904–907. https://doi.org/10.1097/MAO.0000000000000620

    Article  Google Scholar 

  6. Vaid S, Vaid N, Manikoth M, Zope A (2015) Role of HRCT and MRI of the temporal bone in predicting and grading the degree of difficulty of cochlear implant surgery. Indian J Otolaryngol Head Neck Surg 67(02):150–158

    Article  PubMed  PubMed Central  Google Scholar 

  7. Grover M, Sharma S, Singh SN, Kataria T, Lakhawat RS, Sharma MP (2018) Measuring cochlear Duct length in an Asian population: worth giving a thought! Eur Arch Otorhinolaryngol 275(3):725–728

    Article  PubMed  Google Scholar 

  8. Gstoettner W, Franz P, Hamzavi J et al (1999) Intracochlear position of cochlear implant electrodes. Acta Otolaryngol 119:229–233

    Article  CAS  PubMed  Google Scholar 

  9. Gstoettner W, Plenk HJ, Franz P et al (1997) Cochlear implant deep electrode insertion: extent of insertional trauma. Acta Otolaryngol 117(2):274–277

    Article  CAS  PubMed  Google Scholar 

  10. Kennedy DW (1987) Multichannel intracochlear electrodes: mechanism of insertion trauma. Laryngoscope 97:42–49

    Article  CAS  PubMed  Google Scholar 

  11. Welling DB, Hinojosa R, Gantz BJ et al (1993) Insertional trauma of multichannel cochlear implants. Laryngoscope 103:995–1001

    Article  CAS  PubMed  Google Scholar 

  12. Hochmair I, Arnold W, Nopp P et al (2003) Deep electrode insertion in cochlear implants: apical morphology, electrodes and speech perception results. Acta Otolaryngol 123:612–617

    PubMed  Google Scholar 

  13. Friesen LM, Shannon RV, Slattery WH (2000) Effects of electrode location on speech recognition with the nucleus-22 cochlear implant. J Am Acad Audiol 11:418–428

    Article  CAS  PubMed  Google Scholar 

  14. Karaca CT, Toros SZ, Noseri HK (2012) Analysis of anatomic variations in temporal bone by radiology. Int Adv Otol 8:239–243

    Google Scholar 

  15. Sennaroglu L, Ba** MD (2017) Classification and current management of inner ear malformations. Balkan Med J 34:397–411

    Article  PubMed  PubMed Central  Google Scholar 

  16. Komatsubara S, Haruta A, Nagano Y, Kodama T (2007) Evaluation of cochlear nerve imaging in severe congenital sensorineural hearing loss. ORL J Otorhinolaryngol Relat Spec 69:198–202

    Article  PubMed  Google Scholar 

  17. Tahir E, Ba** MD, Atay G, Mocan BÖ, Sennaroğlu L (2017) Bony cochlear nerve canal and internal auditory canal measures predict cochlear nerve status. J Laryngol Otol 131:676–683

    Article  CAS  PubMed  Google Scholar 

  18. Jackler RK, Luxford WM, House WF (1987) Congenital malformations of the inner ear: a classification based on embryogenesis. Laryngoscope 97:2–14

    Article  CAS  PubMed  Google Scholar 

  19. Pappas DG, Simpson LC, McKenzie RA et al (1990) High-resolution computed tomography: determination of the cause of pediatric sensorineural hearing loss. Laryngoscope 100:564–569

    Article  CAS  PubMed  Google Scholar 

  20. Kumar JU, Kavitha Y (2017) Application of curved MPR algorithm to high resolution 3 dimensional T2 weighted CISS images for virtual uncoiling of membranous cochlea as an aid for cochlear morphometry. J Clin Diagn Res 11(2):12–14

    Google Scholar 

  21. Avci E, Nauwelaers T, Lenarz T, Hamacher V, Kral A (2014) Variations in microanatomy of the human cochlea. J Comp Neurol 522:3245–3261

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zahara D, Dewi RD, Aboet A, Putranto FM, Lubis ND, Ashar T (2019) Variations in cochlear size of cochlear implant candidates. Int Arch Otorhinolaryngol 23(2):184–190

    Article  PubMed  Google Scholar 

  23. Fujita S, Sando I (1994) Postnatal development of the vestibular aqueduct in relation to the internal auditory canal. Computer-aided three-dimensional reconstruction and measurement study. Ann Otol Rhinol Laryngol 103(9):719–22

    Article  CAS  PubMed  Google Scholar 

  24. Guirado RC (1992) Malformations du conduit auditif interne. Bordx Fr Rev Laryngol Otol Rhinol 113(5):419–421

    CAS  Google Scholar 

  25. Valvassori GE, Pierce RH (1964) The normal internal auditory canal. Am J Roentgenol Radium Ther Nucl Med 92:1232–1241

    CAS  PubMed  Google Scholar 

  26. Erkoç MF, Imamoglu H, Okur A, Gümüş C, Dogan M (2012) Normative size evaluation of internal auditory canal with magnetic resonance imaging: review of 3786 patients. Folia Morphol (Warsz) 71(4):217–220

    PubMed  Google Scholar 

  27. Nadol JB Jr, Xu W-Z (1992) Diameter of the cochlear nerve in deaf humans: implications for cochlear implantation. Ann Otol Rhinol Laryngol 101(12):988–993

    Article  PubMed  Google Scholar 

  28. Adad B, Rasgon BM, Ackerson L (1999) Relationship of the facial nerve to the tympanic annulus: a direct anatomic examination. Laryngoscope 109(8):1189–1192. https://doi.org/10.1097/00005537-199908000-00002

    Article  CAS  PubMed  Google Scholar 

  29. Jatale SP, Chintale SG, Kirdak VR, Shaikh KA (2021) Our experience of anatomical variations of facial nerve in cadaveric temporal bone dissection. Indian J Otolaryngol Head Neck Surg 73(3):271–275. https://doi.org/10.1007/s12070-020-01969-9

    Article  PubMed  Google Scholar 

  30. Lloyd SK, Kasbekar AV, Kenway B, Prevost T, Hockman M, Beale T et al (2010) Developmental changes in cochlear orientation–implications for cochlear implantation. Otol Neurotol 31:902–907

    Article  PubMed  Google Scholar 

  31. Sharma S, Grover M, Singh SN, Kataria T, Lakhawat RS (2018) Cochlear orientation: pre-operative evaluation and intra-operative significance. J Laryngol Otol 132:540–543. https://doi.org/10.1017/S002221511800066X

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibhor Malhotra.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malhotra, V., Kumar, S., Menon, G.S. et al. Morphometric Analysis of Temporal Bone Radiology for Cochlear Implant Candidacy. Indian J Otolaryngol Head Neck Surg 76, 702–711 (2024). https://doi.org/10.1007/s12070-023-04257-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12070-023-04257-4

Keywords

Navigation