Log in

Preoperative Magnetic Resonance Elastography (MRE) of Skull Base Tumours: A Review

  • Other Articles
  • Published:
Indian Journal of Otolaryngology and Head & Neck Surgery Aims and scope Submit manuscript

Abstract

Conventional magnetic resonance imaging (MRI) can detect tumors consistency, but it can’t predict tumor stiffness or adherence of the tumor to nearby structures. Magnetic resonance elastography (MRE) is a known non-invasive MRI based imaging technique used to assess the viscoelasticity of the tissues particularly liver fibrosis. This study discussed the importance of preoperative MRE in skull base tumors and the future implications of this new imaging modality. We did review of the English literature (by searching PubMed) regarding the use of MRE in preoperative assessment of skull base tumours stiffness and adherence to surrounding tissues. Recent research demonstrated that MRE can detect the stiffness and adherence of skull base tumors to surrounding structures by recording the spread of mechanical waves in the different tissues. In addition to non-radiation exposure, this technique is fast and can be incorporated into the conventional (MRI) study. MRE can palpate skull base tumours by imaging, allowing the stiffness of the tumour to be assessed. Preoperative assessment of brain tumours consistency, stiffness, and adherence to surrounding tissues is critical to avoid injury of important nearby structures and better preoperative patient counselling regarding surgical approach (endoscopic or open), operative time, and suspected surgical complications. However, the accuracy of MRE is less in small and highly vascular tumors. Also, MRE can’t accurately detect tumour-brain adherence, but the new modality (slip-interface imaging) can. Hence, adding MRE to the conventional MRI study may help in preoperative diagnosis and treatment of skull base tumours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kirsch CF, Ho ML (2021) Advanced magnetic resonance imaging of the skull base. Semin Ultrasound CT MR 42(3):229–252. https://doi.org/10.1053/j.sult.2021.04.006

    Article  PubMed  Google Scholar 

  2. Mathur A, Jain N, Kesavadas C, Thomas B, Kapilamoorthy TR (2015) Imaging of skull base pathologies: role of advanced magnetic resonance imaging techniques. Neuroradiol J 28(4):426–437. https://doi.org/10.1177/1971400915609341

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wei L, Lin SA, Fan K, **ao D, Hong J, Wang S (2015) Relationship between pituitary adenoma texture and collagen content revealed by comparative study of MRI and pathology analysis. Int J Clin Exp Med 8(8):12898–12905

    PubMed  PubMed Central  Google Scholar 

  4. Zada G, Yashar P, Robison A, Winer J, Khalessi A, Mack WJ, Giannotta SL (2013) A proposed grading system for standardizing tumor consistency of intracranial meningiomas. Neurosurg Focus 35(6):E1. https://doi.org/10.3171/2013.8.FOCUS13274

    Article  PubMed  Google Scholar 

  5. Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL (1995) Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269(5232):1854–1857. https://doi.org/10.1126/science.7569924

    Article  CAS  PubMed  Google Scholar 

  6. Yin M, Talwalkar JA, Glaser KJ, Manduca A, Grimm RC, Rossman PJ, Fidler JL, Ehman RL (2007) Assessment of hepatic fibrosis with magnetic resonance elastography. Clin Gastroenterol Hepatol 5(10):1207-1213.e2. https://doi.org/10.1016/j.cgh.2007.06.012

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yasar TK, Wagner M, Bane O, Besa C, Babb JS, Kannengiesser S, Fung M, Ehman RL, Taouli B (2016) Interplatform reproducibility of liver and spleen stiffness measured with MR elastography. J Magn Reson Imaging 43(5):1064–1072. https://doi.org/10.1002/jmri.25077

    Article  PubMed  Google Scholar 

  8. An H, Shi Y, Guo Q, Liu Y (2016) Test-retest reliability of 3D EPI MR elastography of the pancreas. Clin Radiol 71(10):1068.e7-1068.e12. https://doi.org/10.1016/j.crad.2016.03.014

    Article  CAS  PubMed  Google Scholar 

  9. Munder T, Pfeffer A, Schreyer S, Guo J, Braun J, Sack I, Steiner B, Klein C (2018) MR elastography detection of early viscoelastic response of the murine hippocampus to amyloid β accumulation and neuronal cell loss due to Alzheimer’s disease. J Magn Reson Imaging 47(1):105–114. https://doi.org/10.1002/jmri.25741

    Article  PubMed  Google Scholar 

  10. Lipp A, Trbojevic R, Paul F, Fehlner A, Hirsch S, Scheel M, Noack C, Braun J, Sack I (2013) Cerebral magnetic resonance elastography in supranuclear palsy and idiopathic Parkinson’s disease. Neuroimage Clin 20(3):381–387. https://doi.org/10.1016/j.nicl.2013.09.006

    Article  Google Scholar 

  11. Huston J 3rd, Murphy MC, Boeve BF, Fattahi N, Arani A, Glaser KJ, Manduca A, Jones DT, Ehman RL (2016) Magnetic resonance elastography of frontotemporal dementia. J Magn Reson Imaging 43(2):474–478. https://doi.org/10.1002/jmri.24977

    Article  PubMed  Google Scholar 

  12. Streitberger KJ, Sack I, Krefting D, Pfüller C, Braun J, Paul F, Wuerfel J (2012) Brain viscoelasticity alteration in chronic-progressive multiple sclerosis. PLoS One 7(1):e29888. https://doi.org/10.1371/journal.pone.0029888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Green MA, Bilston LE, Sinkus R (2008) In vivo brain viscoelastic properties measured by magnetic resonance elastography. NMR Biomed 21(7):755–764. https://doi.org/10.1002/nbm.1254

    Article  PubMed  Google Scholar 

  14. Kruse SA, Rose GH, Glaser KJ, Manduca A, Felmlee JP, Jack CR Jr, Ehman RL (2008) Magnetic resonance elastography of the brain. Neuroimage 39(1):231–237. https://doi.org/10.1016/j.neuroimage.2007.08.030

    Article  PubMed  Google Scholar 

  15. Xu L, Lin Y, Han JC, ** ZN, Shen H, Gao PY (2007) Magnetic resonance elastography of brain tumors: preliminary results. Acta Radiol 48(3):327–330. https://doi.org/10.1080/02841850701199967

    Article  CAS  PubMed  Google Scholar 

  16. Sack I, Beierbach B, Hamhaber U, Klatt D, Braun J (2008) Non-invasive measurement of brain viscoelasticity using magnetic resonance elastography. NMR Biomed 21(3):265–271. https://doi.org/10.1002/nbm.1189

    Article  PubMed  Google Scholar 

  17. Takamura T, Motosugi U, Ogiwara M, Sasaki Y, Glaser KJ, Ehman RL, Kinouchi H, Onishi H (2021) Relationship between shear stiffness measured by MR elastography and perfusion metrics measured by perfusion CT of meningiomas. AJNR Am J Neuroradiol 42(7):1216–1222. https://doi.org/10.3174/ajnr.A7117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hamhaber U, Sack I, Papazoglou S, Rump J, Klatt D, Braun J (2007) Three-dimensional analysis of shear wave propagation observed by in vivo magnetic resonance elastography of the brain. Acta Biomater 3(1):127–137. https://doi.org/10.1016/j.actbio.2006.08.007

    Article  CAS  PubMed  Google Scholar 

  19. Mariappan YK, Glaser KJ, Ehman RL (2010) Magnetic resonance elastography: a review. Clin Anat 23(5):497–511. https://doi.org/10.1002/ca.21006

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fattahi N, Van Gompel J, Arani A, Meyer F, Lanzino G, Link MJ, Ehman R, Huston J (2015) Higher-resolution magnetic resonance elastography in meningiomas to determine intratumoral consistency. Neurosurgery 77(4):653–658. https://doi.org/10.1227/NEU.0000000000000892

    Article  PubMed  Google Scholar 

  21. Aunan-Diop JS, Halle B, Pedersen CB, Jensen U, Munthe S, Harbo F, Andersen MS, Poulsen FR (2022) Magnetic resonance elastography in intracranial neoplasms: a sco** review. Top Magn Reson Imaging 31(1):9–22. https://doi.org/10.1097/RMR.0000000000000292

    Article  PubMed  Google Scholar 

  22. Doyley MM, Parker KJ (2014) Elastography: general principles and clincial applications. Ultrasound Clin 9(1):1–11. https://doi.org/10.1016/j.cult.2013.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yin Z, Romano AJ, Manduca A, Ehman RL, Huston J (2018) Stiffness and beyond: what MR elastography can tell us about brain structure and function under physiologic and pathologic conditions. Top Magn Reson Imaging 27(5):305–318. https://doi.org/10.1097/RMR.0000000000000178

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hoover JM, Morris JM, Meyer FB (2011) Use of preoperative magnetic resonance imaging T1 and T2 sequences to determine intraoperative meningioma consistency. Surg Neurol Int 2:142. https://doi.org/10.4103/2152-7806.85983

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hennedige TP, Hallinan JT, Leung FP, Teo LL, Iyer S, Wang G, Chang S, Madhavan KK, Wee A, Venkatesh SK (2016) Comparison of magnetic resonance elastography and diffusion-weighted imaging for differentiating benign and malignant liver lesions. Eur Radiol 26(2):398–406. https://doi.org/10.1007/s00330-015-3835-8

    Article  PubMed  Google Scholar 

  26. Pepin KM, McGee KP (2018) Quantifying tumor stiffness with magnetic resonance elastography: the role of mechanical properties for detection, characterization, and treatment stratification in oncology. Top Magn Reson Imaging 27(5):353–362. https://doi.org/10.1097/RMR.0000000000000181

    Article  PubMed  Google Scholar 

  27. Reiss-Zimmermann M, Streitberger KJ, Sack I, Braun J, Arlt F, Fritzsch D, Hoffmann KT (2015) High resolution imaging of viscoelastic properties of intracranial tumours by multi-frequency magnetic resonance elastography. Clin Neuroradiol 25(4):371–378. https://doi.org/10.1007/s00062-014-0311-9

    Article  CAS  PubMed  Google Scholar 

  28. Sakai N, Takehara Y, Yamashita S, Ohishi N, Kawaji H, Sameshima T, Baba S, Sakahara H, Namba H (2016) Shear stiffness of 4 common intracranial tumors measured using MR elastography: comparison with intraoperative consistency grading. AJNR Am J Neuroradiol 37(10):1851–1859. https://doi.org/10.3174/ajnr.A4832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Iuchi T, Saeki N, Tanaka M, Sunami K, Yamaura A (1998) MRI prediction of fibrous pituitary adenomas. Acta Neurochir (Wien) 140(8):779–786. https://doi.org/10.1007/s007010050179

    Article  CAS  PubMed  Google Scholar 

  30. Zada G, Du R, Laws ER Jr (2011) Defining the “edge of the envelope”: patient selection in treating complex sellar-based neoplasms via transsphenoidal versus open craniotomy. J Neurosurg 114(2):286–300. https://doi.org/10.3171/2010.8.JNS10520

    Article  PubMed  Google Scholar 

  31. Naganuma H, Satoh E, Nukui H (2002) Technical considerations of transsphenoidal removal of fibrous pituitary adenomas and evaluation of collagen content and subtype in the adenomas. Neurol Med Chir (Tokyo) 42(5):202–212. https://doi.org/10.2176/nmc.42.202

    Article  PubMed  Google Scholar 

  32. Snow RB, Lavyne MH, Lee BC, Morgello S, Patterson RH Jr (1986) Craniotomy versus transsphenoidal excision of large pituitary tumors: the usefulness of magnetic resonance imaging in guiding the operative approach. Neurosurgery 19(1):59–64. https://doi.org/10.1227/00006123-198607000-00008

    Article  CAS  PubMed  Google Scholar 

  33. Bahuleyan B, Raghuram L, Rajshekhar V, Chacko AG (2006) To assess the ability of MRI to predict consistency of pituitary macroadenomas. Br J Neurosurg 20(5):324–326. https://doi.org/10.1080/02688690601000717

    Article  CAS  PubMed  Google Scholar 

  34. Pierallini A, Caramia F, Falcone C, Tinelli E, Paonessa A, Ciddio AB, Fiorelli M, Bianco F, Natalizi S, Ferrante L, Bozzao L (2006) Pituitary macroadenomas: preoperative evaluation of consistency with diffusion-weighted MR imaging–initial experience. Radiology 239(1):223–231. https://doi.org/10.1148/radiol.2383042204

    Article  PubMed  Google Scholar 

  35. Alimohamadi M, Sanjari R, Mortazavi A, Shirani M, Moradi Tabriz H, HadizadehKharazi H, Amirjamshidi A (2014) Predictive value of diffusion-weighted MRI for tumor consistency and resection rate of nonfunctional pituitary macroadenomas. Acta Neurochir (Wien) 156(12):2245–2252. https://doi.org/10.1007/s00701-014-2259-6

    Article  PubMed  Google Scholar 

  36. Yamamoto J, Kakeda S, Shimajiri S, Takahashi M, Watanabe K, Kai Y, Moriya J, Korogi Y, Nishizawa S (2014) Tumor consistency of pituitary macroadenomas: predictive analysis on the basis of imaging features with contrast-enhanced 3D FIESTA at 3T. AJNR Am J Neuroradiol 35(2):297–303. https://doi.org/10.3174/ajnr.A3667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lagerstrand K, Gaedes N, Eriksson S, Farahmand D, De Coursey E, Johansson G, Jönsson L, Skoglund T (2021) Virtual magnetic resonance elastography has the feasibility to evaluate preoperative pituitary adenoma consistency. Pituitary 24(4):530–541. https://doi.org/10.1007/s11102-021-01129-4

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hughes JD, Fattahi N, Van Gompel J, Arani A, Ehman R, Huston J (2016) Magnetic resonance elastography detects tumoral consistency in pituitary macroadenomas. Pituitary 19(3):286–292. https://doi.org/10.1007/s11102-016-0706-5

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zimny A, Sasiadek M (2011) Contribution of perfusion-weighted magnetic resonance imaging in the differentiation of meningiomas and other extra-axial tumors: case reports and literature review. J Neurooncol 103(3):777–783. https://doi.org/10.1007/s11060-010-0445-9

    Article  PubMed  Google Scholar 

  40. Shi Y, Huo Y, Pan C, Qi Y, Yin Z, Ehman RL, Li Z, Yin X, Du B, Qi Z, Yang A, Hong Y (2022) Use of magnetic resonance elastography to gauge meningioma intratumoral consistency and histotype. Neuroimage Clin 36:103173. https://doi.org/10.1016/j.nicl.2022.103173

    Article  PubMed  PubMed Central  Google Scholar 

  41. Murphy MC, Huston J 3rd, Glaser KJ, Manduca A, Meyer FB, Lanzino G, Morris JM, Felmlee JP, Ehman RL (2013) Preoperative assessment of meningioma stiffness using magnetic resonance elastography. J Neurosurg 118(3):643–648. https://doi.org/10.3171/2012.9.JNS12519

    Article  PubMed  Google Scholar 

  42. Cepeda S, Arrese I, García-García S, Velasco-Casares M, Escudero-Caro T, Zamora T, Sarabia R (2021) Meningioma consistency can be defined by combining the radiomic features of magnetic resonance imaging and ultrasound elastography. A pilot study using machine learning classifiers. World Neurosurg 146:e1147–e1159. https://doi.org/10.1016/j.wneu.2020.11.113

    Article  PubMed  Google Scholar 

  43. Romani R, Tang WJ, Mao Y, Wang DJ, Tang HL, Zhu FP, Che XM, Gong Y, Zheng K, Zhong P, Li SQ, Bao WM, Benner C, Wu JS, Zhou LF (2014) Diffusion tensor magnetic resonance imaging for predicting the consistency of intracranial meningiomas. Acta Neurochir (Wien) 156(10):1837–1845. https://doi.org/10.1007/s00701-014-2149-y

    Article  PubMed  Google Scholar 

  44. Huston J, Arani A, Hughes J, Fattahi N, Van Gompel J, Link M, Ehman R (2015) Magnetic resonance elastography for presurgical assessment of skull base lesions. J Neurol Surg B 76:A137. https://doi.org/10.1055/s-0035-1546602

    Article  Google Scholar 

  45. Mariappan YK, Glaser KJ, Manduca A, Ehman RL (2009) Cyclic motion encoding for enhanced MR visualization of slip interfaces. J Magn Reson Imaging 30(4):855–863. https://doi.org/10.1002/jmri.21914

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yin Z, Glaser KJ, Manduca A, Van Gompel JJ, Link MJ, Hughes JD, Romano A, Ehman RL, Huston J (2015) Slip interface imaging predicts tumor-brain adhesion in vestibular schwannomas. Radiology 277(2):507–517. https://doi.org/10.1148/radiol.2015151075

    Article  PubMed  Google Scholar 

  47. Yin Z, Hughes JD, Trzasko JD, Glaser KJ, Manduca A, Van Gompel J, Link MJ, Romano A, Ehman RL, Huston J 3rd (2017) Slip interface imaging based on MR-elastography preoperatively predicts meningioma-brain adhesion. J Magn Reson Imaging 46(4):1007–1016. https://doi.org/10.1002/jmri.25623

    Article  PubMed  PubMed Central  Google Scholar 

  48. Celikoglu E, Suslu HT, Hazneci J, Bozbuga M (2011) The relation between surgical cleavage and preoperative neuroradiological findings in intracranial meningiomas. Eur J Radiol 80(2):e109–e115. https://doi.org/10.1016/j.ejrad.2010.06.016

    Article  PubMed  Google Scholar 

  49. Fehlner A, Hirsch S, Weygandt M, Christophel T, Barnhill E, Kadobianskyi M, Braun J, Bernarding J, Lützkendorf R, Sack I, Hetzer S (2017) Increasing the spatial resolution and sensitivity of magnetic resonance elastography by correcting for subject motion and susceptibility-induced image distortions. J Magn Reson Imaging 46(1):134–141. https://doi.org/10.1002/jmri.25516

    Article  PubMed  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Nabil Abdelhamid Ahmed.

Ethics declarations

Conflict of interest

There is no conflict of interest regarding the publication of this paper.

Ethical Approval

This research was in accordance with the ethical standards of the institutional and the national research committee of Egypt and with the 1964 Helsinki declaration and its later amendments.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, A.N.A. Preoperative Magnetic Resonance Elastography (MRE) of Skull Base Tumours: A Review. Indian J Otolaryngol Head Neck Surg 75, 4173–4178 (2023). https://doi.org/10.1007/s12070-023-03955-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12070-023-03955-3

Keywords

Navigation