Log in

Eigenvalue estimates for a generalized Paneitz operator

  • Published:
Proceedings - Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we give some universal inequalities for the eigenvalues of a generalized Paneitz operator on a bounded domain in a complete Riemannian manifold. As an application, we obtain a universal bound for the \((k+1)\)-th eigenvalue of the weighted Paneitz operator on compact domains of complete submanifolds in the Euclidean space in terms of the first k eigenvalue independent of the domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Branson T P, Group representations arising from Lorentz conformal geometry, J. Funct. Anal.  74 (1987) 199–291

    Article  MathSciNet  MATH  Google Scholar 

  2. Brendle S, Global existence and convergence for a higher order flow in conformal geometry, Ann. Math. 158(2) (2003) 323–343

    Article  MathSciNet  MATH  Google Scholar 

  3. Cheng Q M, Estimates for eigenvalues of the Paneitz operator, J. Differential Equations 257 (2014) 3868–3886

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen D and Li H, The sharp estimates for the first eigenvalue of Paneitz operator in \(4\)-dimensional submanifolds (2010), ar**v:1010.3102

  5. Chen D and Li H, Second eigenvalue of Paneitz operator and the mean curvature, Comm. Math. Phys. 305 (2011) 555–562

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheverry C and Raymond N, A Guide to Spectral Theory: Application and Exercises (2021) (Cham: Birkhäuser)

    Book  MATH  Google Scholar 

  7. Du F and Wu C, The eigenvalues inequalities of the weighted Paneitz operator and weighted vibration problem for a clamped plate, Scientia Sinica Mathematica 50 (2020) 1–14

    Google Scholar 

  8. Gomes J N V and Miranda J F R, Eigenvalue estimates for a class of elliptic differential operators in divergence form, Nonlinear Anal. 176 (2018) 1–19

    Article  MathSciNet  MATH  Google Scholar 

  9. Gursky M J, The Weyl functional, de Rham cohomology, and Kähler–Einstein metrics, Ann. Math. 148(2) (1998) 315–337

    Article  MathSciNet  MATH  Google Scholar 

  10. Gursky M J, The principal eigenvalue of a conformally invariant differential operator, with an application to semilinear elliptic PDE, Commun. Math. Phys. 207 (1999) 131–143

    Article  MathSciNet  MATH  Google Scholar 

  11. Jost J, Jost X L, Wang Q and **a C, Universal bounds for eigenvalues of the polyharmonic operators, Trans. Amer. Math. Soc. 363(4) (2011) 1821–1854

    Article  MathSciNet  MATH  Google Scholar 

  12. Paneitz S, A quartic conformally covariant differential operator for arbitarary pseudo-Riemannian manifolds, preprint (1983)

  13. Roth J, Reilly-type inequalities for Paneitz and Steklov eigenvalue, Potential Anal. 53(3) (2020) 773–798

    Article  MathSciNet  MATH  Google Scholar 

  14. Xu X W and Yang P C, Positivity of Paneitz operators, Discrete Contin. Dyn. Syst. 7 (2001) 329–342

    Article  MathSciNet  MATH  Google Scholar 

  15. Xu X W and Yang P C, Conformal energy in four dimension, Math. Ann. 324(4) (2002) 731–742

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahroud Azami.

Additional information

Communicated by Swagato Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azami, S. Eigenvalue estimates for a generalized Paneitz operator. Proc Math Sci 133, 27 (2023). https://doi.org/10.1007/s12044-023-00749-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12044-023-00749-z

Keywords

2010 Mathematics Subject Classification

Navigation