Log in

Functional analysis of HADH c.99C>G shows that the variant causes the proliferation of pancreatic islets and leu-sensitive hyperinsulinaemia

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

A novel missense variant (NM_005327.7: c.99C>G, p.Ile33Met) was discovered in 3-hydroxyacyl-CoA dehydrogenase (HADH), which is involved in congenital hyperinsulinism (CHI). This variant may be damaging or deleterious, as assessed using protein prediction software. This study aimed at the impact of this variant on islets and if it caused the leu-sensitive insulin secretion. The adeno-associated virus containing the HADH missense variant (p.Ile33Met), wild-type (WT) HADH or empty vector (EV) was constructed, and the rats were infected with it. Three weeks after the transfection, 15 rats were dissected to observe the effect of the variant on the islet tissue. Then we treated the remaining rats with leucine or sodium carboxymethyl cellulose (CMC-Na) by gavage and drew blood from the rat tail vein to detect the variations in blood glucose, serum insulin and serum glucagon. Further, we dissected the rats to observe the fluctuation of insulin and glucagon contents in pancreatic islets under the combined action of leucine and p.Ile33Met. Insulin and glucagon were observed in the islet tissue under an inverted fluorescence microscope, serum insulin and glucagon were detected by ELISA, and the blood glucose value was determined using a Roche glucometer. The positive area and average gray value of islet fluorescence pictures were analysed using the software Image J (USA). Rats expressing p.Ile33Met showed significantly higher insulin and glucagon content, as well as the islet area, compared to WT and EV rats. Moreover, after intragastric administration of leucine, the serum insulin content of the variant rats increased but the blood sugar level decreased significantly. Meanwhile, there was an appreciable decrease in the insulin content in rat pancreatic islet tissues. Our results suggest that the variant NM_005327.7: c.99C>G promotes the proliferation of pancreatic islets, enhances the secretion of insulin, and induces leu-sensitive hyperinsulinaemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Agren A., Borg K., Brolin S. E., Carlman J. and Lundqvist G. 1977 Hydroxyacyl CoA dehydrogenase, an enzyme important in fat metabolism in different cell types in the islets of Langerhans. Diabetes Metab. J. 3, 169–172.

    CAS  Google Scholar 

  • Ajala O. N., Huffman D. M. and Ghobrial I. I. 2016 Glucokinase variant-a rare cause of recurrent hypoglycemia in adults: a case report and literature review. J. Commun. Hosp. Int. 6, 32983.

    Google Scholar 

  • Cabezas O. R., Flanagan S. E., Stanescu H., Garcia-Martinez E., Caswell R., Lango-Allen H. et al. 2017 Polycystic kidney disease with hyperinsulinemic hypoglycemia caused by a promoter variant in phosphomannomutase 2. Am. Soc. Nephrol. 28, 2529–2539.

    Article  CAS  Google Scholar 

  • Flanagan S. E., Kapoor R. R. and Hussain K. 2011 Genetics of congenital hyperinsulinemic hypoglycemia. Semin. Pediatr. Surg. 20, 13–17.

    Article  Google Scholar 

  • Galcheva S., Demirbilek H., Al-Khawaga S. and Hussain K. 2019 The genetic and molecular mechanisms of congenital hyperinsulinism. Front. Endocrinol. 10, 111.

    Article  Google Scholar 

  • Gutgold A., Gross D. J., Glaser B. and Szalat A. 2017 Diagnosis of ABCC8 congenital hyperinsulinism of infancy in a 20-year-old man evaluated for factitious hypoglycemia. J. Clin. Endocrinol. Metab. 102, 345–349.

    PubMed  Google Scholar 

  • Hardy O. T., Hohmeier H. E., Becker T. C., Manduchi E., Doliba N. M., Gupta R. K. et al. 2007 Functional genomics of the β-cell: short-chain 3-hydroxyacyl-coenzyme A dehydrogenase regulates insulin secretion independent of K+ currents. Mol. Endocrinol. 21, 765–773.

    Article  CAS  Google Scholar 

  • Kapoor R. R., James C., Flanagan S. E., Ellard S., Eaton S. and Hussain K. 2009 3-Hydroxyacyl-coenzyme A dehydrogenase deficiency and hyperinsulinemic hypoglycemia: characterization of a novel variant and severe dietary protein sensitivity. J. Clin. Endocrinol. Metab. 94, 2221–2225.

    Article  CAS  Google Scholar 

  • Kostopoulou E. and Shah P. 2019 Hyperinsulinaemic hypoglycaemia-an overview of a complex clinical condition. Eur. J. Pediatr. 178, 1151–1160.

    Article  Google Scholar 

  • Li C., Chen P., Palladino A., Narayan S., Russell L. K., Sayed S. et al. 2010 Mechanism of hyperinsulinism in short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency involves activation of glutamate dehydrogenase. J. Biol. Chem. 285, 31806–31818.

    Article  CAS  Google Scholar 

  • Li L. J., Wang Y. B., Qu P. F., Ma L., Liu K., Yang L. et al. 2020 Genetic analysis of Yunnan sudden unexplained death by whole genome sequencing in Southwest of China. J. Forensic Leg. Med. 70, 101896.

    Article  Google Scholar 

  • Li M., Li C., Allen A., Stanley C. A. and Smith T. J. 2011 The structure and allosteric regulation of glutamate dehydrogenase. Neurochem. Int. 59, 445–455.

    Article  CAS  Google Scholar 

  • MacMullen C., Fang J., Hsu B. Y., Kelly A., de Lonlay-Debeney P., Saudubray J. M. et al. 2001 Hyperinsulinism/hyperammonemia syndrome in children with regulatory variants in the inhibitory guanosine triphosphate-binding domain of glutamate dehydrogenase. J. Clin. Endocrinol. Metab. 86, 1782–1787.

    CAS  PubMed  Google Scholar 

  • Newsholme P., Bender K., Kiely A. and Brennan L. 2007 Amino acid metabolism, insulin secretion and diabetes. Biochem. Soc. Trans. 35, 1180–1186.

    Article  CAS  Google Scholar 

  • Nolan C. J., Madiraju M. S., Delghingaro-Augusto V., Peyot M. L. and Prentki M. 2006 Fatty acid signaling in the beta-cell and insulin secretion. Diabetes 55, 16–23.

    Article  Google Scholar 

  • Nykamp K., Anderson M., Powers M., Garcia J., Herrera B., Ho Y. Y. et al. 2017 Sherloc: a comprehensive refinement of the ACMG-AMP variant classification criteria. Genet. Med. 19, 1105–1117.

    Article  Google Scholar 

  • Okada S., Fukunaga S., Ohta H., Furuta T., Hirano R., Motonaga T. et al. 2020 Cerebral insufficiency caused by diazoxide in a premature neonate with congenital hyperinsulinism. Neuropediatrics 51, 211–214.

    Article  CAS  Google Scholar 

  • Pinney S. E., Ganapathy K., Bradfield J., Stokes D., Sasson A., Mackiewicz K. et al. 2013 Dominant form of congenital hyperinsulinism maps to HK1 region on 10q. Horm. Res. Paediatr. 80, 18–27.

    Article  CAS  Google Scholar 

  • Roy K., Satapathy A. K., Houhton J., Flanagan S. E., Radha V., Mohan V. et al. 2019 Congenital hyperinsulinemic hypoglycemia and hyperammonemia due to pathogenic variants in GLUD1. Indian J. Pediatr. 86, 1051–1053.

    Article  Google Scholar 

  • Santer R., Kinner M., Passarge M., Superti-Furga A., Mayatepek E., Meissner T. et al. 2001 Novel missense variants outside the allosteric domain of glutamate dehydrogenase are prevalent in European patients with the congenital hyperinsulinism-hyperammonemia syndrome. Hum. Genet. 108, 66–71.

    Article  CAS  Google Scholar 

  • Satapathy A. K., Jain V., Ellard S. and Flanagan S. E. 2016 Hyperinsulinemic hypoglycemia of infancy due to novel HADH variant in two siblings. Indian Pediatr. 53, 912–913.

    Article  Google Scholar 

  • Snider K. E., Becker S., Boyajian L., Shyng S. L., MacMullen C., Hughes N. et al. 2013 Genotype and phenotype correlations in 417 children with congenital hyperinsulinism. J. Clin. Endocrinol. Metab. 98, E355-363.

    Article  CAS  Google Scholar 

  • Stanley C. A., Lieu Y. K., Hsu B. Y., Burlina A. B., Greenberg C. R., Hopwood N. J. et al. 1998 Hyperinsulinism and hyperammonemia in infants with regulatory variants of the glutamate dehydrogenase gene. N. Engl. J. Med. 338, 1352–1357.

    Article  CAS  Google Scholar 

  • Suh S. W., Hamby A. M. and Swanson R. A. 2007 Hypoglycemia, brain energetics, and hypoglycemic neuronal death. Glia 55, 1280–1286.

    Article  Google Scholar 

  • Tegtmeyer L. C., Rust S., van Scherpenzeel M., Ng B. G., Losfeld M. E., Timal S. et al. 2014 Multiple phenotypes in phosphoglucomutase 1 deficiency. N. Engl. J. Med. 370, 533–542.

    Article  CAS  Google Scholar 

  • van Loon L. J., Kruijshoop M., Menheere P. P., Wagenmakers A. J., Saris W. H. and Keizer H. A. 2003 Amino acid ingestion strongly enhances insulin secretion in patients with long-term type 2 diabetes. Diabetes Care 26, 625–630.

    Article  Google Scholar 

  • Vredendaal P. J., van den Berg I. E., Malingre H. E., Stroobants A. K., Olde W. D. and Berger R. 1996 Human short-chain L-3-hydroxyacyl-CoA dehydrogenase: cloning and characterization of the coding sequence. Biochem. Biophys. Res. Commun. 223, 718–723.

    Article  CAS  Google Scholar 

  • Vredendaal P. J., van den Berg I. E., Stroobants A. K., van der Aee D. L., Malingre H. E. and Berger R. 1998 Structural organization of the human short-chain L-3-hydroxyacyl-CoA dehydrogenase gene. Mamm. Genome 9, 763–768.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (81460285, 81960573), the Applied Basic Research Projects of Yunnan Province (202101AY070001-008), and the Innovation Group of Kunming Medical University (CXTD201803). All authors are grateful to the Department of Laboratory at the Animal Science and Technology Achievement Incubation Center at Kunming Medical University for technical support and thoughtful insights.

Author information

Authors and Affiliations

Authors

Contributions

PPL and Y-BW contributed to the study design. WL, PFQ, JLD performed experiments and produced the first draft of the manuscript. LM, YMX, XT analysed the data. S-JW, KL, YHL captured pictures and image processing. P-PL and WL performed a final critical review of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Pu-** Lei.

Additional information

Corresponding editor: Durgadas P. Kasbekar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, W., Wang, YB., Qu, PF. et al. Functional analysis of HADH c.99C>G shows that the variant causes the proliferation of pancreatic islets and leu-sensitive hyperinsulinaemia. J Genet 101, 44 (2022). https://doi.org/10.1007/s12041-022-01381-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-022-01381-y

Keywords

Navigation