Log in

Consistency of seasonal variability in regional CO2 fluxes from GOSAT-IM, NASA-GEOS, and NOAA-CT

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Assessment of consistency in seasonal variability of CO2 fluxes between GOSAT-IM, NASA-GEOS, and NOAA-CT databases was carried out over major biogeographic regions across the globe. A blended data product was composited through a linear least square error optimization procedure from the weighted mean of the three datasets. The blended-product is in closer agreement with GOSAT-IM followed by NOAA-CT and NASA-GEOS for most parts of the globe; however, the blended-product was found to be closer to NASA-GEOS for the Arabian Sea and India. Comparison with limited in-situ FLUXNET observations shows NASA-GEOS has a better agreement for India, and NOAA-CT is better for Europe, Africa, and the US. The mean climatology of these datasets exhibits spatially distinct and coherent patterns of positive and negative fluxes that characterize the source and sink of atmospheric CO2 across the globe. The tropical oceanic and terrestrial regions and the southern circumpolar oceans have been playing as the sources, whereas the temperate oceanic and terrestrial ecosystems and the Eurasian Boreal are the sinks. The seasonal cycles of the fluxes are intense over the northern temperate and boreal terrestrial and oceanic regions; wherein annual amplitudes dominate over the semi-annual amplitudes. The mean climatology varies in the range of −6 to 6 gC m−2 month−1 for oceans as well as continents; however, amplitudes of the seasonal cycle are one order higher for the continents (>20 gC m−2 month−1) than that of the oceans (<1 gC m−2 month−1). The tropical desert tracts, especially Sahara and Thar, and the equatorial oceans show minima in their climatological mean with the reduced seasonal cycle. All these data, however, depict a broad agreement in their seasonal cycle and mean climatology; they exhibit significant differences in their annual budgets, amplitude, and phases of annual and semi-annual harmonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • Ahlström A, Raupach M R, Schurgers G, Smith B, Arneth A, Jung M, Reichstein M, Canadell J G, Friedlingstein P, Jain A K, Kato E, Poulter B, Sitch S, Stocker B D, Viovy N, Wang Y P, Wiltshire A, Zaehle S and Zeng N 2015 The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink; Science 348(6237) 895–899, https://doi.org/10.1126/science.aaa1668.

  • Baker D F et al. 2006 TransCom 3 inversion inter-comparison: Impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988–2003, Glob. Biogeochem. Cycles 20 GB1002, https://doi.org/10.1029/2004-GB002439.

  • Baldocchi D D, Falge E and Wilson K W 2001 A spectral analysis of biosphere–atmosphere trace gas flux densities and meteorological variables across hour to multi-year time scales; Agric. For. Meteorol. 107 1–27.

    Article  Google Scholar 

  • Basu S, Guerlet S, Butz A, Houweling S, Hasekamp O, Aben I, Krummel P, Steele P, Langenfelds R, Torn M, Biraud S, Stephens B, Andrews A and Worthy D 2013 Global CO2 fluxes estimated from GOSAT retrievals of total column CO2; Atmos. Chem. Phys. 13 8695–8717, https://doi.org/10.5194/acp-13-8695-2013.

    Article  Google Scholar 

  • Boesch H, Baker D, Connor B, Crisp D and Miller C 2011 Global characterization of CO2 column retrievals from shortwave-infrared satellite observations of the Orbiting Carbon Observatory-2 mission; Remote Sensing 3 270–304.

    Article  Google Scholar 

  • Chatterjee A, Gierach M M, Sutton A J, Feely R A, Crisp D, Eldering A, Gunson M R, O'Dell C W, Stephens B B and Schimel D S 2017 Influence of El Niño on atmospheric CO2 over the tropical Pacific Ocean: Findings from NASA's OCO-2 mission; Science 358(6360) eaam5776, https://doi.org/10.1126/science.aam5776.

  • Denman K, Brasseur G, Chidthaisong A, Ciais P, Cox P, Dickinson R, Haugustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias P, Wofsy S and Zhang X 2007 Couplings between changes in the climate system and biogeochemistry; Climate Change: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

  • Dettinger M D and Ghil M 1998 Seasonal and interannual variations of atmospheric CO2 and climate; Tellus B 50 1–24.

    Article  Google Scholar 

  • Findlater J 1969 A major low-level air current near the Indian Ocean during the northern summer; Quart. J. Roy. Meteorol. Soc. 95 362–380.

    Article  Google Scholar 

  • Fischer A S et al. 2002 Mesoscale eddies, coastal upwelling, and the upper-ocean heat budget in the Arabian Sea; Deep-Sea Res. II 49 2231–2264.

  • Francey R J, Tans P P, Allison C E, Enting I G, White J W C and Troller M 1995 Changes in oceanic and terrestrial carbon uptake since 1982; Nature 373 326–330.

    Article  Google Scholar 

  • Gauss C 1963 Theory of the motion of the heavenly bodies moving about the Sun in conic sections; Dover, New York, 326p.

  • Hamazaki T, Kaneko Y, Kuze A and Kondo K 2005 Fourier transform spectrometer for greenhouse gases observing satellite (GOSAT); International Society for Optics and Photonics Enabling Sensor and Platform Technologies for Spaceborne Remote Sensing 5659 73–81.

    Google Scholar 

  • Heimann M and Keeling C D 1989 A three-dimensional model of atmospheric CO2 transport based on observed winds: 2. Model description and simulated tracer experiments; In: Aspects of climate variability in the Pacific and the Western Americas (ed.) Peterson D H, https://doi.org/10.1029/GM055p0237.

  • Idso C D, Idso S B, Kimball B A, Park H S, Hoober J K and Balling Jr R C 2000 Ultra-enhanced spring branch growth in CO2-enriched trees: Can it alter the phase of the atmosphere’s seasonal CO2 cycle?; Environ. Exp. Botany 43 91–100.

    Article  Google Scholar 

  • Ishii et al. 2014 Air–sea CO2 flux in the Pacific Ocean for the period 1990–2009; Biogeosci. 11 709–734, https://doi.org/10.5194/bg-11-709-2014.

    Article  Google Scholar 

  • Ito A 2010 Changing ecophysiological processes and carbon budget in East Asian ecosystems under near-future changes in climate: Implications for long-term monitoring from a process-based model; J. Plant Res. 123 577–588, https://doi.org/10.1007/s10265-009-0305-x.

  • Jacobson A R, Mikaloff Fletcher S E, Gruber N, Sarmiento J L and Gloor M 2007 A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide: 2. Regional results; Global Biogeochem. Cycles 21 GB1020, https://doi.org/10.1029/2006GB002703.

  • Jacobson A R, Schuldt K N, Miller J B, Oda T, Tans P, Andrews A, Mund J, Ott L, Collatz G J, Aalto T, Afshar S, Aikin K, Aoki S, Apadula F, Baier B, Bergamaschi P, Beyersdorf A, Biraud S C, Bollenbacher A, Miroslaw Zimnoch et al. 2020 Carbon Tracker CT2019B; NOAA Global Monitoring Laboratory, https://doi.org/10.25925/20201008.

  • Jha C S, Thumaty K C, Rodda S R, Sonakia A and Dadhwal V K 2013 Analysis of carbon dioxide, water vapour and energy fluxes over an Indian teak mixed deciduous forest for winter and summer months using eddy covariance technique; J. Earth Syst. Sci. 122 1259–1268.

    Article  Google Scholar 

  • Jiang X, Chahine M T, Olsen E T, Chen L and Yung Y L 2010 Interannual variability of mid-tropospheric CO2 from atmospheric infrared sounder; Geophys. Res. Lett. 37 L13801, https://doi.org/10.1029/2010GL042823.

    Article  Google Scholar 

  • Kalman R 1960 A new approach to linear filtering and prediction problems; Trans. ASME J. Basic Eng. 82D 35–45.

    Article  Google Scholar 

  • Keeling C D, Bacastow R B, Carter A F, Piper S C, Whorf T P, Heimann M, Mook W G and Roeloffzen H 1989 A three-dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data; In: Aspects of climate variability in the Pacific and the Western Americas (ed.) Peterson D H, AGU Geophys. Monogr. 55 165–236.

  • Keeling C D, Whorf T P, Wahlen M and Van Der Pilcht J 1995 Interannual extremes in the rate of rise of the atmospheric carbon dioxide since 1980; Nature 375 666–670.

    Article  Google Scholar 

  • Keenan T F et al. 2016 Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake; Nature Commun. 7 13428.

    Article  Google Scholar 

  • Kenneth N S, John Mund, Ingrid T, Luijkx et al. 2021 Multi-laboratory compilation of synchronized and gap-filled atmospheric carbon dioxide data for the period 1957–2020 (obspack_co2_1_GLOBALVIEWplus_v7.0_2021-08-18; NOAA Earth System Laboratory, Global Monitoring Laboratory, https://doi.org/10.25925/20210801.

  • Krishnapriya M, Rabindra K Nayak, Shaik Allahudeen, Bhuvana Chandra A, Dadhwal V K, Jha C S, Seshasai M V R, Sasamal S K and Prasad K V S R 2020 Seasonal variability of tropospheric CO2 over India based on model simulation, satellite retrieval and in-situ observation; J. Earth Syst. Sci., https://doi.org/10.1007/s12040-020-01478-x.

  • Krol M, Houweling S, Bregman B, van den Broek M, Segers A, van Velthoven P, Peters W, Dentener F and Bergamaschi P 2005 The two-way nested global chemistry-transport zoom model TM5: Algorithm and applications; Atmos. Chem. Phys. 5 417–432, https://doi.org/10.5194/acp-5-417-2005.

    Article  Google Scholar 

  • Lambert G, Monfray P, Ardouin B, Bonsang G, Gaudry A, Kazan V and Polian G 1995 Year-to-year changes in atmospheric CO2; Tellus 47B 53–55.

    Article  Google Scholar 

  • Lauderdale J M, Williams R G, Munday D R and Marshall D P 2017 The impact of Southern Ocean residual upwelling on atmospheric CO2 on centennial and millennial timescales; Clim. Dyn. 48 1611–1631, https://doi.org/10.1007/s00382-016-3163-y.

    Article  Google Scholar 

  • Liu J, Bowman K W, Lee M, Henze D K, Bousserez N, Brix H, Collatz G J, Menemenlis D, Ott L, Pawson S, Jones D and Nassar R 2014 Carbon monitoring system flux estimation and attribution: Impact of ACOS-GOSAT XCO2 sampling on the inference of terrestrial biospheric sources and sinks; Tellus B(66) 22486, https://doi.org/10.3402/tellusb.v66.22486.

  • Maksyutov S, Patra P K, Onishi R, Saeki T and Nakazawa T 2008 NIES/FRCGC global atmospheric tracer transport model: Description, validation, and surface sources and sinks inversion; Earth Simulator 9 3–18.

    Google Scholar 

  • Maksyutov S, Takagi H, Valsala V K, Saito M, Oda T, Saeki T, Belikov D A, Saito R, Ito A, Yoshida Y, Morino I, Uchino O, Andres R J and Yokota T 2013 Regional CO2 flux estimates for 2009–2010 based on GOSAT and ground-based CO2 observations; Atmos. Chem. Phys. 13 9351–9373, https://doi.org/10.5194/acp-13-9351-2013.

    Article  Google Scholar 

  • McPhaden M J, Zebiak S E and Glantz M H 2006 ENSO as an integrating concept in earth science; Science 314 1740–1745, https://doi.org/10.1126/science.1132588.

    Article  Google Scholar 

  • Min Liu, Jiabing Wu, Xudong Zhu, Honglin He, Wenxiao Jia and Weining **ang 2015 Evolution and variation of atmospheric carbon dioxide concentration over terrestrial ecosystems as derived from eddy covariance measurements; Atmos. Environ. 114 75–82, ISSN 1352-2310, https://doi.org/10.1016/j.atmosenv.2015.05.026.

  • Monteil G, Broquet G, Scholze M, Lang M, Karstens U, Gerbig C, Koch F T, Smith N E, Thompson R L, Luijkx I T, White E, Meesters A, Ciais P, Ganesan A L, Manning A, Mischurow M, Peters W, Peylin P, Tarniewicz J, Rigby M, Rödenbeck C, Vermeulen A and Walton E M 2020 The regional European atmospheric transport inversion comparison, EUROCOM: First results on European-wide terrestrial carbon fluxes for the period 2006–2015; Atmos. Chem. Phys. 20 12,063–12,091. https://doi.org/10.5194/acp-20-12063-2020.

  • Nassar R et al. 2010 Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species; Geo-scientific Model Development 3 689–716.

    Article  Google Scholar 

  • Nassar R, Jones D B A, Kulawik S S, Worden J R, Bowman K W, Andres R J, Suntharalingam P, Chen J M, Brenninkmeijer C A M, Schuck T J, Conway T J and Worthy D E 2011 Inverse modeling of CO2 sources and sinks using satellite observations of CO2 from TES and surface flask measurements; Atmos. Chem. Phys. 11 6029–6047, https://doi.org/10.5194/acp-11-6029-2011.

  • Nemani R R, Keeling C D, Hashimoto H, Jolly W M, Piper S C, Tucker C J, Myneni R B and Running S W 2003 Climate-driven increases in global terrestrial net primary production from 1982 to 1999; Science 300(5625) 1560–1563, https://doi.org/10.1126/science.1082750.

  • Patra P K, Hajima T, Saito R, Chandra N, Yoshida Y, Ichii K, Kawamiya M, Kondo M, Ito A and Crisp D 2021 Evaluation of earth system model and atmospheric inversion using total column CO2 observations from GOSAT and OCO-2; Prog. Earth Planet. Sci. 8 1–18.

    Article  Google Scholar 

  • Peters W, Krol M C and Dlugokencky E J 2004 Toward regional scale modeling using the two-way nested global model TM5: Characterization of transport using SF6; J. Geophys. Res. 109 D19314, https://doi.org/10.1029/2004JD005020.

    Article  Google Scholar 

  • Pierre F et al. 2020 Global Carbon Budget 2020; Earth Syst. Sci. Data 12 3269–3340, https://doi.org/10.5194/essd-12-3269-2020.

    Article  Google Scholar 

  • Potter C S, Randerson J T, Field C B, Matson P A, Vitousek P M, Mooney H A and Klooster S A 1993 Terrestrial ecosystem production: A process model based on global satellite and surface data; Global Biogeochem. Cycles 7(4) 811–841, https://doi.org/10.1029/93GB02725.

    Article  Google Scholar 

  • Randerson J T, Chapin F S III, Harden J W, Neff J C and Harmon M E 2002 Net ecosystem production: A comprehensive measure of net carbon accumulation by ecosystems; Ecol. Appl. 12(4) 937–947.

    Article  Google Scholar 

  • Randerson J T, Thompson M V, Conway T J, Fung I Y and Field C B 1997 The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide; Global Biogeochem. Cycles 11(4) 535–560, https://doi.org/10.1029/97GB02268.

  • Ratheesh S, Mankad B, Basu S, Kumar R and Sharma R 2013 Assessment of satellite-derived sea surface salinity in the Indian Ocean; IEEE Geosci. Remote Sens. Lett. 10 428–431, https://doi.org/10.1109/LGRS.2012.2207943.

    Article  Google Scholar 

  • Rayner P J, Enting I G, Francey R J and Langenfelds R L 1999 Reconstructing the recent carbon cycle from atmospheric CO2, δ13C and O2/N2 observations; Tellus 51B 213–232.

    Article  Google Scholar 

  • Russell G L and Lerner J A 1981 A new finite-differencing scheme for the tracer transport equation; J. Appl. Meteorol. 20 1483–1498.

    Article  Google Scholar 

  • Saeki T and Patra P K 2017 Implications of overestimated anthropogenic CO2 emissions on East Asian and global land CO2 flux inversion; Geosci. Lett. 4(1) 1–10.

    Article  Google Scholar 

  • Saito M, Ito A and Maksyutov S 2011 Evaluation of biases in JRA-25/JCDAS precipitation and their impact on the global terrestrial carbon balance; J. Climate 24 4109–4125.

    Article  Google Scholar 

  • Saito M, Ito A and Maksyutov S 2013 Optimization of a prognostic biosphere model in atmospheric CO2 variability and terrestrial biomass; Geosci. Model Dev. Discuss. 6 4243–4280.

    Google Scholar 

  • Sarma V V S S 2003 Monthly variability in surface pCO2 and net air–sea CO2 flux in the Arabian Sea; J. Geophys. Res. 108(C8) 3255, https://doi.org/10.1029/2001JC001062.

    Article  Google Scholar 

  • Sarma V V S S, Lenton A, Law R M, Metzl N, Patra P K, Doney S, Lima I D, Dlugokencky E, Ramonet M and Valsala V 2013 Sea–air CO2 fluxes in the Indian Ocean between 1990 and 2009; Biogeosci. 10 7035–7052, https://doi.org/10.5194/bg-10-7035-2013.

    Article  Google Scholar 

  • Sarmiento J L and Gruber N 2006 Ocean bio-geochemical dynamics; Princeton University Press, Princeton, NJ, 528p.

  • Schott F A, **e S P and McCreary Jr J P 2009 Indian Ocean circulation and climate variability; Rev. Geophys. 47 RG1002, https://doi.org/10.1029/2007RG000245.

    Article  Google Scholar 

  • Schuh A E, Jacobson A R, Basu S, Weir B, Baker D and Bowman K 2019 Quantifying the impact of atmospheric transport uncertainty on CO2 surface flux estimates; Global Biogeochem. Cycles 33 484–500, https://doi.org/10.1029/2018GB006086.

    Article  Google Scholar 

  • Shankar D, Vinayachandran P N and Unnikrishnan A S 2002 The monsoon currents in the north Indian Ocean; Progr. Oceanogr. 52(1) 63–120, ISSN 0079-6611, https://doi.org/10.1016/S0079-6611(02)00024-1.

  • Stoffelen A 1998 Toward the true near-surface wind speed: Error modeling and calibration using triple collocation; J. Geophys. Res. 103(C4) 7755–7766.

    Article  Google Scholar 

  • Takagi H, Houweling S, Andres R J, Belikov D, Bril A, Boesch H, Butz A, Guerlet S, Hasekamp O, Maksyutov S, Morino I, Oda T, O’Dell C W, Oshchepkov S, Parker R, Saito M, Uchino O, Yokota T, Yoshida Y and Valsala V 2014 Influence of differences in current GOSAT XCO2 retrievals on surface flux estimation; Geophys. Res. Lett. 41 2598–2605, https://doi.org/10.1002/2013GL059174.

    Article  Google Scholar 

  • Takagi H, Saeki T, Oda T, Saito M, Valsala V, Belikov D, Saito R, Yoshida Y, Morino I, Uchino O, Andres R J, Yokota T and Maksyutov S 2011 On the benefit of GOSAT observations to the estimation of regional CO2 fluxes; Sci. Online Lett. Atmos. 7 161–164.

    Google Scholar 

  • Takahashi T, Sutherland S C, Wanninkhof R, Sweeney C, Feely R A, Chipman D W, Hales B, Friederich G, Chavez F, Watson A, Bakker D C E, Schuster U, Metzl N, Yoshikawa-Inoue H, Ishii M, Midorikawa T, Nojiri Y, Arne Kortzinger, Tobias Steinhoff, Mario Hoppema, Jon Olafsson, Thorarinn S Arnarson, Bronte Tilbrook, Truls Johannsessen, Are Olsen, Richard Bellerby, Wong C S, Bruno Delille, Bates N R and Hein J W de Baar 2009 Climatological mean and decadal changes in surface ocean pCO2, and net sea–air CO2 flux over the global oceans; Deep-Sea Res. II 56 554–577.

  • Tian H, Lu C, Ciais P et al. 2016 The terrestrial biosphere as a net source of greenhouse gases to the atmosphere; Nature 531 225–228, https://doi.org/10.1038/nature16946.

    Article  Google Scholar 

  • Toggweiler J R 1999 Variation of atmospheric CO2 by ventilation of the ocean’s deepest water; Paleoceanography 14 571–588, https://doi.org/10.1029/1999PA900033.

    Article  Google Scholar 

  • Valsala V and Maksyutov S 2010 Simulation and assimilation of global ocean pCO2 and air-sea CO2 fluxes using ship observations of surface ocean pCO2 in a simplified biogeochemical offline model; Tellus B 62 821–840, https://doi.org/10.1111/j.16000889.2010.00495.x.

    Article  Google Scholar 

  • Verwer J G, Spee E J, Blom J G and Hundsdorfer W 1999 A second-order Rosenbrock method applied to photochemical dispersion problems; SIAM J. Sci. Comput. 20 1456–1480.

  • Wang Y, Mingwei Li and Lulu Shen 2013 Accelerating carbon uptake in the Northern Hemisphere: Evidence from the inter-hemispheric difference of atmospheric CO2 concentrations; Tellus B: Chem. Phys. Meteorol. 65(1) 20334, https://doi.org/10.3402/tellusb.v65i0.20334.

    Article  Google Scholar 

  • Wang X, Piao S, Ciais P et al. 2014 A two-fold increase of carbon cycle sensitivity to tropical temperature variations; Nature 506 212–215, https://doi.org/10.1038/nature12915.

    Article  Google Scholar 

  • Watson A J, Vallis G K and Nikurashin M 2015 Southern Ocean buoyancy forcing of ocean ventilation and glacial atmospheric CO2; Nat. Geosci. 8 861–864.

    Article  Google Scholar 

  • Williamson D L and Laprise R 2000 Numerical approximations for global atmospheric general circulation models; Numerical Modeling of the Global Atmosphere in the Climate System, Dordrecht: Kluwer Academic Publishers, pp. 127–219.

  • Williams C A, Hanan N P, Neff J C et al. 2007 Africa and the global carbon cycle; Carbon Balance Manage 2, https://doi.org/10.1186/1750-0680-2-3.

  • Wunch D, Toon Geoffrey C, Blavier Jean-Francois L, Washenfelder Rebecca A, Notholt J, Connor Brian J, Griffith David W T, Sherlock V and Wennberg Paul O 2011 The total carbon column observing network; Phil. Trans. Roy. Soc. A. 369 2087–2112, https://doi.org/10.1098/rsta.2010.0240.

    Article  Google Scholar 

  • Wunch D, Toon G, Sherlock V, Deutscher N M, Liu C, Feist D G and Wennberg P O 2014 The total carbon column observing network’s GGG2014 data version; https://doi.org/10.14291/tccon.ggg2014.documentation.R0/1221662.

  • Yamagata T, Behera S K, Luo J J, Masson S, Jury M R and Rao S A 2004 Coupled Ocean-Atmosphere Variability in the Tropical Indian Ocean; Geophys. Monogr. Ser., pp. 189–212.

  • Yilmaz M T, Crow W T, Anderson M C and Hain C 2012 An objective methodology for merging satellite- and model-based soil moisture products; Water Resour. Res. 48 W11502, https://doi.org/10.1029/2011WR011682.

    Article  Google Scholar 

  • Zimov S A et al. 1999 Contribution of disturbance to high-latitude amplification of atmospheric CO2; Science 284 1973–1976.

    Article  Google Scholar 

Download references

Acknowledgements

This research has been carried out as part of the National Carbon Project, ISRO-Geosphere–Biosphere Programme, executed at NRSC, Hyderabad. We would like to thank the data providers: FLUXNET, GOSAT team at JAXA, NOAA Carbon Tracker team, Forestry Division of National Remote Sensing Centre (ISRO), Hyderabad, and GEOS team at GSFC, NASA. We thank Dr Prabir K Patra from JAMSTEC for providing valuable suggestions and critical comments on the manuscript during the review process.

Author information

Authors and Affiliations

Authors

Contributions

M Krishnapriya played the key role in the execution of the work and manuscript preparation; Rabindra K Nayak perceived the idea and has taken responsibility for executing the work; Shaik Allahudeen and A Bhuvana Chandra have contributed to the analysis of the model simulations and writing of the manuscript; C V Naidu has contributed in manuscript preparation and revision; V K Dadhwal and M V R Seshasai have provided guidance and reviewed the manuscript.

Corresponding author

Correspondence to Rabindra K Nayak.

Additional information

Communicated by Maripi Dileep

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnapriya, M., Nayak, R.K., Naidu, C.V. et al. Consistency of seasonal variability in regional CO2 fluxes from GOSAT-IM, NASA-GEOS, and NOAA-CT. J Earth Syst Sci 131, 191 (2022). https://doi.org/10.1007/s12040-022-01934-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-022-01934-w

Keywords

Navigation