Log in

A field technique for rapid lithological discrimination and ore mineral identification: Results from Mamandur Polymetal Deposit, India

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

This work illustrates the efficiency of field spectroscopy for rapid identification of minerals in ore body, alteration zone and host rocks. The adopted procedure involves collection of field spectra, their processing for noise, spectral matching and spectral un-mixing with selected library end-members. Average weighted spectral similarity and effective peak matching techniques were used to draw end-members from library. Constrained linear mixture modelling technique was used to convolve end-member spectra. Linear mixture model was optimized based on root mean square error between field- and modelled-spectra. Estimated minerals and their abundances were subsequently compared with conventional procedures such as petrography, X-ray diffraction and X-ray fluorescence for accuracy assessment. The mineralized zone is found to contain azurite, galena, chalcopyrite, bornite, molybdenite, marcacite, gahnite, hematite, goethite, anglesite and malachite. The alteration zone contains chlorite, kaolinite, actinolite and mica. These mineral assemblages correlate well with the petrographic measurements (R 2 = 0.89). Subsequently, the bulk chemistry of field samples was compared with spectroscopically derived cumulative weighted mineral chemistry and found to correlate well (R 2 = 0.91–0.98) at excellent statistical significance levels (90–99%). From this study, it is evident that field spectroscopy can be effectively used for rapid mineral identification and abundance estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Adams J B 1974 Visible and near infrared diffuse reflectance spectra of pyroxenes and applied to remote sensing of solid objects in the solar system; J. Geophys. Res. 79 4829–4836.

    Article  Google Scholar 

  • Adams J B 1975 Interpretation of visible and near infrared diffuse reflectance spectra of pyroenes and other rock forming minerals; In: Infrared and Raman spectroscopy of lunar and terrestrial minerals (ed.) Karr C (California: Academic Press), pp. 94–116.

    Google Scholar 

  • Besse S, Sunshine J M, Staid M I, Petro N E, Boardman J W, Green R O, Head J W, Isaacson P J, Mustard J F and Pieters C M 2011 Compositional variability of the Marius Hills volcanic complex from the Moon Mineralogy Mapper (M3); J. Geophys. Res. 116 E00G13.

    Article  Google Scholar 

  • Bharti R, Ramakrishnan D, Singh K D and Nithya M 2012 Relevance of mineral texture on bidirectional reflectance and emission spectroscopy: Implications for geological remote sensing; Proc. IGRASS – 2012, Munich, pp. 3046–3049.

  • Bish D L and Chipera S J 1988 Problems and solutions in quantitative analysis of complex mixtures by X-ray powder diffraction; In: Adv. X-ray Anal. (ed.) Barrett C, Plenum Publications 31 295–308.

  • Boardman J W and Huntington J H 1996 Mineral map** with AVIRIS data; In: Summaries of the 6th Annual JPL Airborne Earth Science Workshop (Pasadena, California: JPL Publication) 96 4(1) 9–11.

  • Burns R 1993 Mineralogical applications of crystal field theory, 2nd edn (Cambridge: Cambridge University Press), 551p.

    Book  Google Scholar 

  • Chattopadhyay P K 1999 Zn-spinel in the metamorphosed Zn–Pb–Cu sulphide deposit at Mamandur, southern India; Mineral. Mag. 63(5) 743–755.

    Google Scholar 

  • Clark R N 1999 Spectroscopy of rocks and minerals: Principles of spectroscopy; In: Manual of remote sensing (eds) Rencz A and Ryerson R A, 3rd edn (New York: John Wiley and Sons), pp. 3–58.

  • Clark R N, King T V V, Klejwa M and Swayze G A 1990a High spectral resolution reflectance spectroscopy of minerals; J. Geophys. Res. 95 12,653–12,680.

    Article  Google Scholar 

  • Clark R N, Gallagher A J and Swayze G A 1990b Material absorption band depth map** of imaging spectrometer data using complete band shape least square fit with library reference spectra; In: Proc. 2nd AVIRIS Workshop (Pasadena, California: JPL Publication) 90–54 176–186.

  • Crosta A P and Filho C R S 2000 Hyperspectral remote sensing for mineral map**: A case-study at Alto Paraiso De Goias, Central Brazil; Rev. Brasil. Geosci. 30(3) 551–554.

    Google Scholar 

  • Crouvi O, Ben-Dor E, Beyth M, Avigad D and Amit R 2006 Quantitative map** of arid alluvial fan surfaces using field spectrometer and hyperspectral remote sensing; Rem. Sens. Environ. 104 103–117.

    Article  Google Scholar 

  • Debba P, Carranza J M, van der Meer F D and Stein A 2006 Abundance estimation of spectrally similar minerals by using derivative spectra in simulated annealing; IEEE Trans. Geosci. Rem. Sens. 44(12) 3649–3658.

    Article  Google Scholar 

  • Farmer V C 1974 The infrared spectra of minerals (London: Mineralogical Society), 539p.

    Google Scholar 

  • Feely K C and Christensen P 1999 Quantitative compositional analysis using thermal emission spectroscopy: Application to igneous and metamorphic rocks; J. Geophys. Res. 104(10) 24,195–24,210.

    Article  Google Scholar 

  • Gaffey S J, McFadden L A, Nash D and Pieters C M 1993 Ultraviolet, visible and near infrared reflectance spectroscopy: Laboratory spectra of geologic materials; In: Remote chemical analysis: Elemental and mineralogical composition (eds) Pieters C M and Englert P A J (Cambridge: Cambridge University Press), pp. 43–78.

    Google Scholar 

  • Galvo S G, Formaggio A R, Couto E G and Roberts D A 2008 Relationships between the mineralogical and chemical composition of tropical soils and topography from hyperspectral remote sensing data; J. Photogram. Rem. Sens. 63 259–271.

    Article  Google Scholar 

  • Gamon J A, Cheng Y, Claudio H, MacKinney L and Sims D A 2006 A mobile tram system for systematic sampling of ecosystem optical properties; Rem. Sens. Environ. 103 246–254.

    Article  Google Scholar 

  • Goetz A F H, Vane G, Solomon J E and Rock B N 1985 Imaging spectrometry for earth; Rem. Sens. Sci. 228 1147–1153.

    Google Scholar 

  • Goetz A F H, Chabrillat S and Lu Z 2001 Field reflectance spectrometry for detection of swelling clays at construction sites; Field Anal. Chem. Technol. 5 143–155.

    Article  Google Scholar 

  • Goetz F H A, Curtiss B and Shiley D A 2009 Rapid gangue mineral concentration measurement over conveyors by NIR reflectance spectroscopy; Mineral. Eng. 22 490–499.

    Article  Google Scholar 

  • Goehner R P 1982 X-ray diffraction quantitative analysis using intensity ratios and external standards; Adv. X-ray Anal. 25 309–313.

    Article  Google Scholar 

  • Govindaraju K 1994 Compilation of working values and descriptions for 383 geostandards; Geostandards Newslett. 18(S1) 1–158.

    Google Scholar 

  • GSI 1994 Detailed information on copper–lead–zinc ores in Karnataka Andhra Pradesh and Tamil Nadu, India; Geological Survey of India, Unpublished report, 39–42.

  • Hapke B 1993 Theory of reflectance and emittance spectroscopy; (Cambridge, UK: Cambridge University Press), 513p.

    Book  Google Scholar 

  • Herrmann W, Blake M, Doyle M, Huston D, Kamprad J, Merry N and Pontual S 2001 Short wavelength infrared (SWIR) spectral analysis of hydrothermal alteration zones associated with base metal sulphide deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland; Econ. Geol. 96 939–955.

    Google Scholar 

  • Hunt G R 1977 Spectral signatures of particulate minerals in the visible and near infrared; Geophysics 42 501–513.

    Article  Google Scholar 

  • Hunt G R 1982 Spectroscopic properties of rocks and minerals; In: Handbook of physical properties of rocks, (ed.) Carmichael R S (Boca Raton, Florida: CRC Press), pp. 295–385.

    Google Scholar 

  • Hunt G R and Ashley P 1979 Spectra of altered rocks in the visible and near infraraed; Econ. Geol. 74 1613–1629.

    Article  Google Scholar 

  • Hunt G R and Salisbury J W 1970 Visible and near infrared spectra of minerals and rocks: I Silicate minerals; Mod. Geol. 1 283–300.

    Google Scholar 

  • Kruse F A 1996 Identification and map** of minerals in drill core using hyperspectral image analysis of infrared reflectance spectra; Int. J. Rem. Sens. 17(9) 1623–1632.

    Article  Google Scholar 

  • Kruse F A, Lefkoff A B, Boardman J B, Heidebrecht K B, Shapiro A T, Barloon P J and Goetz A F H 1993 The spectral image processing system (SIPS) – Interactive visualization and analysis of imaging spectrometer data; Rem. Sens. Environ. 44 145–163.

    Article  Google Scholar 

  • Kusuma K N, Ramakrishnan D, Pandalai H S and Kailash G 2010 Noise-signal index threshold: A new noise-reduction technique for generation of reference spectra and efficient hyperspectral image classification; Geocarto Int. 25(7) 569–580.

    Article  Google Scholar 

  • Lau O W, Hon P K and Bai T 2000 A new approach to a coding and retrieval system for infrared spectral data: The ‘effective peak matching’ method; Vibr. Spectroscopy 23(1) 23–30.

    Article  Google Scholar 

  • Liu D, Zhang Y, Zhang B, Song K, Wang Z, Duan H and Li F 2006 Effects of sensor noise in spectral measurements on chlorophyll-a retrieval in Nanhu Lake of Changchun, China; J. Electromagn. Waves Appl. 20 547–557.

    Article  Google Scholar 

  • Marschallinger R and Hofmann P 2010 The application of object based image analysis to petrographic micrographs; In: Microscopy: Science, technology, applications and education (eds) Mendez-Vilas A and Diaz J (Badajoz, Spain: Formatex Research Centre Publications), pp. 1526–1532.

    Google Scholar 

  • Mazer A S, Martin M, Lee M and Solomon J E 1988 Image processing software for imaging spectrometry data analysis; Rem. Sens. Environ. 24 201–210.

    Article  Google Scholar 

  • Milton E J, Schaepman M E, Anderson K, Kneubühler M and Fox N 2009 Progress in field spectroscopy; Rem. Sens. Environ. 113 92–109.

    Article  Google Scholar 

  • Mustard J F, Li L and He G 1998 Nonlinear spectral mixture modeling of Lunar multispectral data: Implications for lateral transport; J. Geophys. Res. – Planets 103 419–425.

    Article  Google Scholar 

  • Mustard J F and Sunshine J M 1999 Spectral analysis for earth science: Investigations using remote sensing data; Chapter 5; In: Manual of remote sensing (eds) Rencz A and Ryerson R A, 3rd edn (New York: John Wiley and Sons), 286p.

  • Nowicki S A and Christensen P R 2007 Rock abundance on Mars from the thermal emission spectrometer; J. Geophys. Res. 112 E05007 1–20.

    Article  Google Scholar 

  • Philpotts A and Ague J 2009 Principles of igneous and metamorphic petrology, 2nd edn, (New York: Cambridge University Press), pp. 454–457.

    Google Scholar 

  • Pour B A and Hashim M 2011 Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran; J. Asian Earth Sci. 42 1309–1323.

    Article  Google Scholar 

  • Pour B A and Hashim M 2012 Identifying areas of high economic-potential copper mineralization using ASTER data in Urumieh-Dokhtar Volcanic Belt, Iran; Adv. Space Res. 49 753–769.

    Article  Google Scholar 

  • Ramakrishnan D and Kusuma K N 2008 Marine clays and its impact on the rapid urbanization developments: A case study of Mumbai area using EO-1-Hyperion data; In: Hyperspectral remote sensing and spectral signature applications (ed.) Rajendran S (New Delhi: New India Publishing Agency), pp. 53–64.

  • Ramsey M S and Christensen P R 1998 Mineral abundance determination: Quantitative deconvolution of thermal emission spectra; J. Geophys. Res. 103 577–596.

    Article  Google Scholar 

  • Ramsey E, Rangoonwala A, Nelson G, Ehrlich R and Martella K 2005 Generation and validation of characteristic spectra from EO-1 Hyperion image data for detecting the occurrence of the invasive species Chinese tallow; Int. J. Rem. Sens. 26 1611–1636.

    Article  Google Scholar 

  • Rogers A D and Christensen P R 2007 Surface mineralogy of Martian low-albedo regions from MGS-TES data: Implications for upper crustal evolution and surface alteration; J. Geophys. Res. 112 E01003 1–18.

    Google Scholar 

  • Salisbury J W 1998 Spectral measurements field guide, Unpublished report; U.S. Defense Technology Information Center Report ADA362372 82.

  • Schaepman M E and Dangel S 2000 Solid laboratory calibration of non-imaging spectroradiometer; Appl. Opt. 39 3754–3764.

    Article  Google Scholar 

  • Schmidt K S and Skidmore A K 2004 Smoothing vegetation spectra with wavelets; Int. J. Rem. Sens. 25 1167–1184.

    Article  Google Scholar 

  • Singh K D, Ramakrishnan D and Mansinha L 2012 Relevance of transformation techniques in rapid end-member identification and spectral unmixing: A hypespectral remote sensing perspective; Proc. IGRASS – 2012, Munich, pp. 4066–4069.

  • Spry P G 1987 The chemistry and origin or zincian spinel associated with Aggeneys Cu–Pb–Zn–Ag deposits Namaqualand South Africa; Mineralium Deposita 22 262–268.

    Google Scholar 

  • Sun Y, Seccombe P K and Yang K 2001 Application of IR spectroscopy to define alteration zones associated with Elura zinc–lead–silver deposit NSW Australia; J. Geochem. Explor. 73 11–26.

    Article  Google Scholar 

  • Thompson A J B, Hauff P L and Robitaille A 1999 Alteration map** in exploration: Application of short-wave infrared (SWIR) spectroscopy; Soc. Econ. Geol. Newslett. 39 16–27.

    Google Scholar 

  • van der Meer F and De Jong S 2006 Imaging spectrometry: Basic principles and prospective applications (The Netherlands: Springer Publishers), 451p.

    Google Scholar 

  • van der Meer F, Yang H and Lang H 2006 Imaging spectrometery and geological applications; In: Imaging spectrometry: Basic principles and perspective applications (The Netherlands: Springer Publishers), pp. 201–218.

    Google Scholar 

  • Vaughan R G, Calvin W M and Taranik J V 2003 SEBASS hyperspectral thermal infrared data: Surface emissivity measurement and mineral map**; Rem. Sens. Environ. 85 48–63.

    Article  Google Scholar 

  • Vitorello I and Galvao L S 1996 Spectral properties of geologic materials in the 400 to 2500 nm range: Review for applications to mineral exploration and lithologic map**; Photo Interpretation 34 77–99.

    Google Scholar 

  • Yang K, Lian C, Huntington J F, Peng Q and Wang Q 2005 Infrared spectral reflectance characterization of the hydrothermal alteration at the Tuwu Cu–Au deposit **njiang, China; Mineralium Deposita 40 324–336.

    Article  Google Scholar 

Download references

Acknowledgement

The authors are thankful to Department of Science and Technology, Government of India for financial support through research grant (NRDMS/11/1291/2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D RAMAKRISHNAN.

Rights and permissions

Reprints and permissions

About this article

Cite this article

RAMAKRISHNAN, D., NITHYA, M., SINGH, K.D. et al. A field technique for rapid lithological discrimination and ore mineral identification: Results from Mamandur Polymetal Deposit, India. J Earth Syst Sci 122, 93–106 (2013). https://doi.org/10.1007/s12040-012-0255-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-012-0255-x

Keywords

Navigation